W

In Chapter 2 we discussed the functions that a Database Management System (DBMS)
should provide. Among these are three closely related functions that are intended to ensure
that the database is reliable and remains in a consistent state, namely transaction support,

concurrency control services, and recovery
be maintained in the presence of failures of
when multiple users are accessing the datal
three functions.

Although each function can be discuss

services. This reliability and consistency must
both hardware and software components, and
base. In this chapter we concentrate on these

ed separately, they are mutually dependent.

Both concurrency control and recovery are required to protect the database from data

B

19.1 Transaction Support 551

inconsistencies and data loss. Many DBMSs allow users to undertake simultaneous opera-
tions on the database. If these operations are not controlled, the accesses may interfere
with one another and the database can become inconsistent. To overcome this, the DBMS
implements a concurrency control protocol that prevents database accesses from inter-
fering with one another.

Database recovery is the process of restoring the database to a correct state following
a failure. The failure may be the result of a system crash due to hardware or software
errors, a media failure, such as a head crash, or a software error in the application, such as
a logical error in the program that is accessing the database. It may also be the result of
unintentional or intentional corruption or destruction of data or facilities by system admin-
istrators or users. Whatever the underlying cause of the failure, the DBMS must be able to
recover from the failure and restore the database to a consistent state.

Structure of this Chapter _

Central to an understanding of both concurrency control and recovery is the notion of a
transaction, which we describe in Section 19.1. In Section 19.2 we discuss concurrency
control and examine the protocols that can be used to prevent conflict. In Section 19.3 we
discuss database recovery and examine the techniques that can be used to ensure the data-
base remains in a consistent state in the presence of failures. In Section 19.4 we examine
more advanced transaction models that have been proposed for transactions that are of a
long duration (from hours to possibly even months) and have uncertain developments, so
that some actions cannot be foreseen at the beginning. In Section 19.5 we examine how
Oracle handles concurrency control and recovery.

In this chapter we consider transaction support, concurrency control, and recovery for a
centralized DBMS, that is a DBMS that consists of a single database. Later, in Chapter 23,
we consider these services for a distributed DBMS, that is a DBMS that consists of multiple
logically related databases distributed across a network.

Transaction Support m

A transaction is a logical unit of work on the database. It may be an entire program,
a part of a program, or a single command (for example, the SQL command INSERT or
UPDATE), and it may involve any number of operations on the database. In the database
context, the execution of an application program can be thought of as a series of trans-
actions with non-database processing taking place in between. To illustrate the concepts
of a transaction, we examine two relations from the instance of the DreamHome rental
database shown in Figure 3.3:

552

Figure 19.1

Example
transactions.

Chapter 19 B Transaction Management

delete(staffNo = x)
for all PropertyForRent records, pno

read(staffNo =x, salary) begin
salary = salary * 1.1 read(propertyNo = pno, staffNo)
write(staffNo = x, new_salary) if (staffNo = x) then
begin
staffNo = newStaffNo
write(propertyNo = pno, staffNo)
end
end
(a) (b)
Staff (staffNo, fName, IName, position, sex, DOB, salary, branchNo)
PropertyForRent (propertyNo, street, city, postcode, type, rooms, rent, ownerNo, staffNo,
branchNo)

A simple transaction against this database is to update the salary of a particular member of
staff given the staff number, x. At a high level, we could write this transaction as shown
in Figure 19.1(a). In this chapter we denote a database read or write operation on a data
item x as read(x) or write(x). Additional qualifiers may be added as necessary; for example,
in Figure 19.1(a), we have used the notation read(staffNo = x, salary) to indicate that we
want to read the data item salary for the tuple with primary key value x. In this example,
we have a transaction consisting of two database operations (read and write) and a non-
database operation (salary = salary*1.1).

A more complicated transaction is to delete the member of staff with a given staff num-
ber x, as shown in Figure 19.1(b). In this case, as well as having to delete the tuple in the Staff
relation, we also need to find all the PropertyForRent tuples that this member of staff managed
and reassign them to a different member of staff, newStaffNo say. If all these updates are
not made, referential integrity will be lost and the database will be in an inconsistent state:
a property will be managed by a member of staff who no longer exists in the database,

A transaction should always transform the database from one consistent state to another,
although we accept that consistency may be violated while the transaction is in progress.
For example, during the transaction in Figure 19.1(b), there may be some moment when
one tuple of PropertyForRent contains the new newStaffNo value and another still contains
the old one, x. However, at the end of the transaction, all necessary tuples should have the
new newStaffNo value.

A transaction can have one of two outcomes. If it completes successfully, the transaction
is said to have committed and the database reaches a new consistent state. On the other
hand, if the transaction does not execute successfully, the transaction is aborted. If a trans-
action is aborted, the database must be restored to the consistent state it was in before the
transaction started. Such a transaction is rolled back or undone. A committed transaction
cannot be aborted. If we decide that the committed transaction was a mistake, we must
perform another compensating transaction to reverse its effects (as we discuss in Sec-
tion 19.4.2). However, an aborted transaction that is rolled back can be restarted later and,
depending on the cause of the failure, may successfully execute and commit at that time.

19.1 Transaction Support

COMMIT

END_TRANSACTION

BEGIN_TRANSACTION
ﬁ

The DBMS has no inherent way of knowing which updates are grouped together to form
a single logical transaction. It must therefore provide a method to allow the user to indic-
ate the boundaries of a transaction. The keywords BEGIN TRANSACTION, COMMIT,
and ROLLBACK (or their equivalent") are available in many data manipulation languages
to delimit transactions. If these delimiters are not used, the entire program is usually
regarded as a single transaction, with the DBMS automatically performing a COMMIT
when the program terminates correctly and a ROLLBACK if it does not.

Figure 19.2 shows the state transition diagram for a transaction. Note that in addition to
the obvious states of ACTIVE, COMMITTED, and ABORTED, there are two other states:

m PARTIALLY COMMITTED, which occurs after the final statement has been executed.
At this point, it may be found that the transaction has violated serializability (see Sec-
tion 19.2.2) or has violated an integrity constraint and the transaction has to be aborted.
Alternatively, the system may fail and any data updated by the transaction may not have
been safely recorded on secondary storage. In such cases, the transaction would go into
the FAILED state and would have to be aborted. If the transaction has been successful,
any updates can be safely recorded and the transaction can go to the COMMITTED state.

m FAILED, which occurs if the transaction cannot be committed or the transaction is aborted
while in the ACTIVE state, perhaps due to the user aborting the transaction or as a result
of the concurrency control protocol aborting the transaction to ensure serializability.

Properties of Transactions

There are properties that all transactions should possess. The four basic, or so-called
ACID, properties of a transaction are (Haerder and Reuter, 1983):

®m Atomicity The ‘all or nothing’ property. A transaction is an indivisible unit that is
either performed in its entirety or is not performed at all. It is the responsibility of the
recovery subsystem of the DBMS to ensure atomicity.

m Consistency A transaction must transform the database from one consistent state to

another consistent state. It is the responsibility of both the DBMS and the application
developers to ensure consistency. The DBMS can ensure consistency by enforcing all

t With the ISO SQL standard, BEGIN TRANSACTION is implied by the first transaction-initiating SQL
statement (see Section 6.5).

Figure 19.2
State transition
diagram for a
transaction.

19.1.1

553

554 Chapter 19 1 Transaction Management

19.1.2

Figure 19.3
DBMS transaction
subsystem.

the constraints that have been specified on the database schema, such as integrity and
enterprise constraints. However, in itself this is insufficient to ensure consistency. For
example, suppose we have a transaction that is intended to transfer money from one
bank account to another and the programmer makes an error in the transaction logic and
debits one account but credits the wrong account, then the database is in an inconsistent
state. However, the DBMS would not have been responsible for introducing this incon-
sistency and would have had no ability to detect the error.

W [solation Transactions execute independently of one another. In other words, the
partial effects of incomplete transactions should not be visible to other transactions. It
is the responsibility of the concurrency control subsystem to ensure isolation.

W Durability The effects of a successfully completed (committed) transaction are per-
manently recorded in the database and must not be lost because of a subsequent failure.
It is the responsibility of the recovery subsystem to ensure durability.

Database Architecture

In Chapter 2 we presented an architecture for a DBMS. Figure 19.3 represents an extract
from Figure 2.8 identifying four high-level database modules that handle transactions,
concurrency control, and recovery. The transaction manager coordinates transactions on
behalf of application programs. It communicates with the scheduler, the module respons-
ible for implementing a particular strategy for concurrency control. The scheduler is
sometimes referred to as the lock manager if the concurrency control protocol is locking-
based. The objective of the scheduler is to maximize concurrency without allowing

Database
and
system catalog

19.2 Concurrency Control

concurrently executing transactions to interfere with one another, and so compromise the
integrity or consistency of the database.

If a failure occurs during the transaction, then the database could be inconsistent. It is
the task of the recovery manager to ensure that the database is restored to the state it was
in before the start of the transaction, and therefore a consistent state. Finally, the buffer
manager is responsible for the transfer of data between disk storage and main memory.

Concurrency Control

In this section we examine the problems that can arise with concurrent access and the
techniques that can be employed to avoid these problems. We start with the following
working definition of concurrency control.

Concurrency ' The | process of managmg simultaneous operations on the database
control without having them interfere with one another

The Need for Concurrency Control

A major objective in developing a database is to enable many users to access shared data
concurrently. Concurrent access is relatively easy if all users are only reading data, as there
is no way that they can interfere with one another. However, when two or more users are
accessing the database simultaneously and at least one is updating data, there may be inter-
ference that can result in inconsistencies.

This objective is similar to the objective of multi-user computer systems, which allow
two or more programs (or transactions) to execute at the same time. For example, many
systems have input/output (I/O) subsystems that can handle 1/O operations independently,
while the main central processing unit (CPU) performs other operations. Such systems can
allow two or more transactions to execute simultaneously. The system begins executing
the first transaction until it reaches an I/O operation. While the 1/O is being performed, the
CPU suspends the first transaction and executes commands from the second transaction.
When the second transaction reaches an I/O operation, control then returns to the first
transaction and its operations are resumed from the point at which it was suspended.
The first transaction continues until it again reaches another I/O operation. In this way, the
operations of the two transactions are interleaved to achieve concurrent execution. In
addition, throughput — the amount of work that is accomplished in a given time interval
— is improved as the CPU is executing other transactions instead of being in an idle state
waiting for I/O operations to complete.

However, although two transactions may be perfectly correct in themselves, the inter-
leaving of operations in this way may produce an incorrect result, thus compromising the
integrity and consistency of the database. We examine three examples of potential prob-
lems caused by concurrency: the lost update problem, the uncommitted dependency
problem, and the inconsistent analysis problem. To illustrate these problems, we use a
simple bank account relation that contains the DreamHome staff account balances. In this
context, we are using the transaction as the unit of concurrency control.

19.2

19.2.1

555

556 , Chapter 19 B Transaction Management

I Example 19.1 The lost update probiem

An apparently successfully completed update operation by one user can be overridden by
another user. This is known as the lost update problem and is illustrated in Figure 19.4,
in which transaction T, is executing concurrently with transaction T,. T, is withdrawing
£10 from an account with balance bal,, initially £100, and T, is depositing £100 into the
same account. If these transactions are executed serially, one after the other with no inter-
leaving of operations, the final balance would be £190 no matter which transaction is
performed first,

Transactions T, and T, start at nearly the same time, and both read the balance as £100.
T, increases bal, by £100 to £200 and stores the update in the database. Meanwhile, transac-
tion T, decrements its copy of bal, by £10 to £90 and stores this value in the database, over-
writing the previous update, and thereby ‘losing’ the £100 previously added to the balance.

The loss of T,’s update is avoided by preventing T, from reading the value of bal, until
after T,’s update has been completed.

Figure 19.4

The iost update i T T, baly

problem. t begin_transaction 100
4 begin_transaction . read(baly) 100
t3 read(bal,) bal, = bal, + 100 100
ty baly =bal, - 10 write(bal,) 200
ts write(bal,) commit 90
tg commit 90

1

I Example 19.2 The uncommitted dependency (or dirty read) problem

The uncommitted dependency problem occurs when one transaction is allowed to see the
intermediate results of another transaction before it has committed. Figure 19.5 shows an
example of an uncommitted dependency that causes an error, using the same initial value
for balance bal, as in the previous example. Here, transaction T, updates bal, to £200,

Figure 19.5

The uncommitted LY Ty Ty bal,

dependency t : begin_transaction 100

problem. t read(bal,) 100
t3 bal, = bal, + 100 100
ty begin_transaction write(bal,) 200
ts read(bal,) H 200
ts bal, =bal, - 10 rollback 100
ty write(bal,) 190

tg commit 190

19.2 Concurrency Control 557

but it aborts the transaction so that bal, should be restored to its original value of £100.
However, by this time, transaction T; has read the new value of bal, (£200) and is using
this value as the basis of the £10 reduction, giving a new incorrect balance of £190, instead
of £90. The value of bal, read by T, is called dirty data, giving rise to the alternative name,
the dirty read problem.

The reason for the rollback is unimportant; it may be that the transaction was in error,
perhaps crediting the wrong account. The effect is the assumption by T, that T,’s update
completed successfully, although the update was subsequently rolled back. This problem
is avoided by preventing T; from reading bal, until after the decision has been made to

either commit or abort T,’s effects. I

The two problems in these examples concentrate on transactions that are updating the
database and their interference may corrupt the database. However, transactions that only
read the database can also produce inaccurate results if they are allowed to read partial
results of incomplete transactions that are simultaneously updating the database. We illus-
trate this with the next example.

I Example 19.3 The inconsistent analysis probiem

The problem of inconsistent analysis occurs when a transaction reads several values from
the database but a second transaction updates some of them during the execution of the
first. For example, a transaction that is summarizing data in a database (for example,
totaling balances) will obtain inaccurate results if, while it is executing, other transactions
are updating the database. One example is illustrated in Figure 19.6, in which a summary
transaction Ty is executing concurrently with transaction T;. Transaction T, is totaling
the balances of account x (£100), account y (£50), and account z (£25). However, in the
meantime, transaction T has transferred £10 from bal, to bal,, so that T now has the wrong
result (£10 too high). This problem is avoided by preventing transaction T, from reading
bal, and bal, until after T5 has completed its updates.

Figure 19.6

Time Ts Ts bal, bal, bal, sum The inconsistent
ty begin_transaction 100 50 25 analysis problem.
ty : begin_transaction sum=0 100 50 25 0

ts read(baly) read(bal,) 100 50 25 0

ty bal, = bal, - 10 sum = sum + bal, 100 50 25 100

t5 write(bal,) read(baly) 90 50 25 100

1s read(bal;) sum = sum + bal, 90 50 25 150

t bal, = bal, + 10 % 50 25 150

ty write(bal) 90 50 35 150

tg commit read(bal;) 90 50 35 150

tio sum = sum + bal, 90 50 35 185

tyy commit 90 50 35 185

|

558

Chapter 19 N Transaction Management

19.2.2

Another problem can occur when a transaction T rereads a data item it has previously read
but, in between, another transaction has modified it. Thus, T receives two different values
for the same data item. This is sometimes referred to as a nonrepeatable (or fuzzy) read.
A similar problem can occur if transaction T executes a query that retrieves a set of tuples
from a relation satisfying a certain predicate, re-executes the query at a later time but finds
that the retrieved set contains an additional (phantom) tuple that has been inserted by
another transaction in the meantime. This is sometimes referred to as a phantom read.

Serializability and Recoverability

The objective of a concurrency control protocol is to schedule transactions in such a way as
to avoid any interference between them, and hence prevent the types of problem described
in the previous section. One obvious solution is to allow only one transaction to execute
at a time: one transaction is committed before the next transaction is allowed to begin.
However, the aim of a multi-user DBMS is also to maximize the degree of concurrency or
parallelism in the system, so that transactions that can execute without interfering with
one another can run in parallel. For example, transactions that access different parts of
the database can be scheduled together without interference. In this section, we examine
serializability as a means of helping to identify those executions of transactions that are
guaranteed to ensure consistency (Papadimitriou, 1979). First, we give some definitions.

Schedule A 'sequence of the operations by a 'set of ‘concurrent transactions
that preserves the order of the operations in' each of the individual
transactions.

A transaction comprises a sequence of operations consisting of read and/or write actions
to the database, followed by a commit or abort action, A schedule S consists of a sequence
of the operations from a set of # transactions T\, T,, ..., T, subject to the constraint that
the order of operations for each transaction is preserved in the schedule. Thus, for each trans-
action T; in schedule S, the order of the operations in T; must be the same in schedule S.

Seria A schedulc>where ‘the operations:.of:-each: transaction are ‘executed
schedule consecutively without any interleaved operations from otfier transactions.

In a serial schedule, the transactions are performed in serial order. For example, if we
have two transactions T, and T,, serial order would be T, followed by T,, or T, followed
by T,. Thus, in serial execution there is no interference between transactions, since only
one is executing at any given time. However, there is no guarantee that the results of all
serial executions of a given set of transactions will be identical. In banking, for example, it
matters whether interest is calculated on an account before a large deposit is made or after.

; _qu_s'_e_ri:a”l_' A SChédule_' where the opér_ations from a set of concurrent t_ransaétio_r‘qs
Schedule areinterleaved. et AR 2

19.2 Concurrency Control

The problems described in Examples 19.1-19.3 resulted from the mismanagement of
concurrency, which left the database in an inconsistent state in the first two examples
and presented the user with the wrong result in the third. Serial execution prevents such
problems occurring. No matter which serial schedule is chosen, serial execution never
leaves the database in an inconsistent state, so every serial execution is considered correct,
although different results may be produced. The objective of serializability is to find non-
serial schedules that allow transactions to execute concurrently without interfering with one
another, and thereby produce a database state that could be produced by a serial execution.

If a set of transactions executes concurrently, we say that the (nonserial) schedule is
correct if it produces the same results as some serial execution. Such a schedule is called
serializable. To prevent inconsistency from transactions interfering with one another, it
is essential to guarantee serializability of concurrent transactions. In serializability, the
ordering of read and write operations is important:

= If two transactions only read a data item, they do not conflict and order is not important.

m If two transactions either read or write completely separate data items, they do not
conflict and order is not important.

m If one transaction writes a data item and another either reads or writes the same data
item, the order of execution is important.

Consider the schedule S, shown in Figure 19.7(a) containing operations from two con-
currently executing transactions T, and T;. Since the write operation on bal, in T does not
conflict with the subsequent read operation on bal, in T,, we can change the order of these
operations to produce the equivalent schedule S, shown in Figure 19.7(b). If we also now
change the order of the following non-conflicting operations, we produce the equivalent
serial schedule S, shown in Figure 19.7(c):

®@ Change the order of the write(bal,) of Tg with the write(bal,) of T,.
m Change the order of the read(bal,) of T, with the read(bal,) of T;.

559

Figure 19.7
Equivalent
schedules:

(a) nonserial
schedule S;;

(b) nonserial
schedule S,
equivalent to S;;
(c) serial schedule
S,, equivalent to

m Change the order of the read(bal,) of T, with the write(bal,) of T,. S;and S,.
Time T TS T, Tq T, Tg
ty begin_transaction begin_transaction begin_transaction
ty read(bal,) read(bal,) read(baly)
t3 write(bal,) write(bal,) write(bal,)
ty begin_transaction begin_transaction read(baly)
ts read(bal,) read(baly) write(baly)
ts write(bal,) read(baly) commit
ty read(baly) write(bal,) begin_transaction
tg write(baly) write(baly) read(baly)
tg commit commit write(baly)
tio read(baly) read(baly) read(baly)
th write(baly) write(baly) write(baly)
t12 commit commit commit

(@)

(b)

{©)

560 Chapter 19 I Transaction Management

Figure 19.8
Two concurrent
update transactions.

Schedule S; is a serial schedule and, since S, and S, are equivalent to S,, S, and S, are
serializable schedules. .

This type of serializability is known as conflict serializability. A conflict serializable
schedule orders any conflicting operations in the same way as some serial execution.
Under the constrained write rule (that is, a transaction updates a data item based on its
old value, which is first read by the transaction), a precedence (or serialization) graph
can be produced to test for conflict serializability. For a schedule S, a precedence graph is
a directed graph G = (N, E) that consists of a set of nodes N and a set of directed edges E,
which is constructed as follows:

@ Create a node for each transaction.

m Create a directed edge T; = T}, if T; reads the value of an item written by T,.

m Create a directed edge T, — T;, if T, writes a value into an item after it has been read
by T..

m Create a directed edge T; — T, if T; writes a value into an item after it has been written
by T..

If an edge T; — T; exists in the precedence graph for S, then in any serial schedule S’
equivalent to S, T; must appear before T;. If the precedence graph contains a cycle the
schedule is not conflict serializable.

Example 19.4 Non-conflict serializable schedule

Consider the two transactions shown in Figure 19.8. Transaction T, is transferring £100
from one account with balance bal, to another account with balance bal,, while T, is
increasing the balance of these two accounts by 10%. The precedence graph for this
schedule, shown in Figure 19.9, has a cycle and so is not conflict serializable.

Time Ty Tio

t begin_transaction

t ; read(bal,)

t3 bal, =bal, + 100

Yy write(bal,) begin_transaction

ts read(bal,)

ts baly = bal, *1.1
ty write(bal,)

tg read(baly)

to baly, = bal, *1.1
t1o : write(baly)

th read(baly) commit

t12 baly = baly, — 100

13 write(baly)

tie commit

19.2 Concurrency Control 561

Figure 19.9
Precedence graph
for Figure 19.8.

View serializability

There are several other types of serializability that offer less stringent definitions of sched-
ule equivalence than that offered by conflict serializability. One less restrictive definition
is called view serializability. Two schedules S, and S, consisting of the same operations
from n transactions T,, T,, ..., T, are view equivalent if the following three conditions
hold:

m For each data item x, if transaction T, reads the initial value of x in schedule S,, then
transaction T; must also read the initial value of x in schedule S,.

m For each read operation on data item x by transaction T; in schedule S,, if the value read
by x has been written by transaction T, then transaction T; must also read the value of
x produced by transaction T;in schedule S,.

m For each data item x, if the last write operation on x was performed by transaction
T; in schedule S,, the same transaction must perform the final write on data item x in
schedule S,.

A ‘schedule is view serializable if it is view equivalent to a serial schedule. Every
conflict serializable schedule is view serializable, although the converse is not true. For
example, the schedule shown in Figure 19.10 is view serializable, although it is not conflict
serializable. In this example, transactions T, and T,; do not conform to the constrained
write rule; in other words, they perform blind writes. It can be shown that any view
serializable schedule that is not conflict serializable contains one or more blind writes.

Time Ty Ty Tys

t; begin_transaction

ty read(bal,)

ty begin_transaction

ty write(bal,)

ts commit

ts write(baly)

ty commit

tg begin_transaction
ty write(baly)

o commit

Figure 19.10
View serializable
schedule that is not
conflict serializable.

562

Chapter 19 B Transaction Management

19.2.3

In general, testing whether a schedule is view serializable is NP-complete, that is, it is
highly improbable that an efficient algorithm can be found (Ullman, 1988).

In practice, a DBMS does not test for the serializability of a schedule. This would be
impractical, as the interleaving of operations from concurrent transactions is determined
by the operating system. Instead, the approach taken is to use protocols that are known to
produce serializable schedules. We discuss such protocols in the next section.

Recoverability

Serializability identifies schedules that maintain the consistency of the database, assuming
that none of the transactions in the schedule fails. An alternative perspective examines the
recoverability of transactions within a schedule. If a transaction fails, the atomicity property
requires that we undo the effects of the transaction. In addition, the durability property states
that once a transaction commits, its changes cannot be undone (without running another,
compensating, transaction). Consider again the two transactions shown in Figure 19.8 but
instead of the commit operation at the end of transaction Ty, assume that T, decides to roll
back the effects of the transaction. T, has read the update to bal, performed by T,, and has
itself updated bal, and committed the change. Strictly speaking, we should undo trans-
action T, because it has used a value for bal, that has been undone. However, the durability
property does not allow this. In other words, this schedule is a nonrecoverable schedule,
which should not be allowed. This leads to the definition of a recoverable schedule.

Recoverable A schedule -where, for each pair of transactions T, and T, if 'T,. reads

schedule a da"ta item previously written by T, then the commit operation of T
: precedes the commit operation of T ; T :

Concurrency control techniques

Serializability can be achieved in several ways. There are two main concurrency control
techniques that allow transactions to execute safely in parallel subject to certain con-
straints: locking and timestamp methods.

Locking and timestamping are essentially conservative (or pessimistic) approaches in
that they cause transactions to be delayed in case they conflict with other transactions at
some time in the future. Optimistic methods, as we see later, are based on the premise that
conflict is rare so they allow transactions to proceed unsynchronized and only check for
conflicts at the end, when a transaction commits. We discuss locking, timestamping, and
optimistic concurrency control techniques in the following sections.

Locking Methods

Locking A procedure used to control concurrent access to data. When one
transaction. is accessing the database, a lock may deny access to other

- transactions to prevent incorrect results.

19.2 Concurrency Control

Locking methods are the most widely used approach to ensure serializability of concurrent
transactions. There are several variations, but all share the same fundamental character-
istic, namely that a transaction must claim a shared (read) or exclusive (write) lock on a
data item before the corresponding database read or write operation. The lock prevents
another transaction from modifying the item or even reading it, in the case of an exclusive
lock. Data items of various sizes, ranging from the entire database down to a field, may
be locked. The size of the item determines the fineness, or granularity, of the lock. The
actual lock might be implemented by setting a bit in the data item to indicate that portion
of the database is locked, or by keeping a list of locked parts of the database, or by other
means. We examine lock granularity further in Section 19.2.8. In the meantime, we
continue to use the term ‘data item’ to refer to the lock granularity. The basic rules for
locking are set out in the following box.

Shared lock If a transaction has a shared lock on a data item, it can read the
item but not update it.

Exclusive lock |f a transaction has an exclusive lock on a data item, it can both
read and update the item.

Since read operations cannot conflict, it is permissible for more than one transaction to
hold shared locks simultaneously on the same item. On the other hand, an exclusive lock
gives a transaction exclusive access to that item. Thus, as long as a transaction holds the
exclusive lock on the item, no other transactions can read or update that data item. Locks
are used in the following way:

B Any transaction that needs to access a data item must first lock the item, requesting a
shared lock for read only access or an exclusive lock for both read and write access.

m If the item is not already locked by another transaction, the lock will be granted.

m If the item is currently locked, the DBMS determines whether the request is compatible
with the existing lock. If a shared lock is requested on an item that already has a shared
lock on it, the request will be granted; otherwise, the transaction must wait until the
existing lock is released.

® A transaction continues to hold a lock until it explicitly releases it either during execution
or when it terminates (aborts or commits). It is only when the exclusive lock has been
released that the effects of the write operation will be made visible to other transactions.

In addition to these rules, some systems permit a transaction to issue a shared lock on
an item and then later to upgrade the lock to an exclusive lock. This in effect allows a
transaction to examine the data first and then decide whether it wishes to update it. If
upgrading is not supported, a transaction must hold exclusive locks on all data items that
it may update at some time during the execution of the transaction, thereby potentially
reducing the level of concurrency in the system. For the same reason, some systems also
permit a transaction to issue an exclusive lock and then later to downgrade the lock to a
shared lock.

Using locks in transactions, as described above, does not guarantee serializability of
schedules by themselves, as Example 19.5 shows.

563

564 ’ Chapter 19 B Transaction Management

I Example 19.5 incorrect locking schedule

Consider again the two transactions shown in Figure 19.8. A valid schedule that may be
employed using the above locking rules is:

S = {write_lock(T,, bal,), read(T,, bal,), write(T,, bal,), unlock(T,, bal,),
write_lock(T,,, bal,), read(T), bal,), write(T,q, bal,), unlock(T,,, bal,),
write_lock(T,, bal,), read(T,, bal,), write(T,q, bal,}, unlock(T,,, bal,),
commit(T,,), write_lock(T,, bal,), read(T,, bal,), write(T,, bal,),
unlock(Ty, bal,), commit(T,)}

If, prior to execution, bal, = 100, bal, = 400, the result should be bal, = 220, bal, = 330, if
T, executes before T\q, Or bal, =210 and bal, = 340, if T,, executes before Ts. However, the
result of executing schedule S would give bal, = 220 and bal, = 340. (S is not a serializable

schedule.) I

The problem in this example is that the schedule releases the locks that are held by a
transaction as soon as the associated read/write is executed and that lock item (say bal,) no
longer needs to be accessed. However, the transaction itself is locking other items (bal,),
after it releases its lock on bal,. Although this may seem to allow greater concurrency, it
permits transactions to interfere with one another, resulting in the loss of total isolation and
atomicity.

To guarantee serializability, we must follow an additional protocol concerning the posi-
tioning of the lock and unlock operations in every transaction. The best-known protocol is
two-phase locking (2PL).

Two-phase locking (2PL)

2PL A transaction follows the two-phase locking protocol if all locking operations
precede the first unlock operation in the transaction. -

According to the rules of this protocol, every transaction can be divided into two phases:
first a growing phase, in which it acquires all the locks needed but cannot release any
locks, and then a shrinking phase, in which it releases its locks but cannot acquire any
new locks. There is no requirement that all locks be obtained simultaneously. Normally,
the transaction acquires some locks, does some processing and goes on to acquire addi-
tional locks as needed. However, it never releases any lock until it has reached a stage
where no new locks are needed. The rules are:

® A transaction must acquire a lock on an item before operating on the item. The lock may
be read or write, depending on the type of access needed.

® Once the transaction releases a lock, it can never acquire any new locks.

19.2 Concurrency Control 565

If upgrading of locks is allowed, upgrading can take place only during the growing
phase and may require that the transaction wait until another transaction releases a shared
lock on the item. Downgrading can take place only during the shrinking phase. We now
look at how two-phase locking is used to resolve the three problems identified in Section
19.2.1.

I Example 19.6 Preventing the lost update problem using 2PL

A solution to the lost update problem is shown in Figure 19.11. To prevent the lost update
problem occurring, T, first requests an exclusive lock on bai,. It can then proceed to read
the value of bal, from the database, increment it by £100, and write the new value back to
the database. When T, starts, it also requests an exclusive lock on bal,. However, because
the data item bal, is currently exclusively locked by T,, the request is not immediately
granted and T, has to wait until the lock is released by T,. This occurs only once the com-
mit of T, has been completed.

: Figure 19.11
e 1 T2 bel Preventing the lost
ty begin_transaction 100 update problem.
1) begin_transaction write_lock(baly) 100
ty write_lock(baly) read(bal,) 100
ty WAIT bal, = bal, + 100 100
ts WAIT write(baly) 200
o WAIT commit/unlock(baly) 200
ty : read(baly) 200
tg bal, = bal, — 10 200
ty write(bal,) 190
tio commit/unlock(bal,) 190

|

Example 19.7 Preventing the uncommitted dependency problem
using 2PL

A solution to the uncommitted dependency problem is shown in Figure 19.12. To prevent
this problem occurring, T, first requests an exclusive lock on bal,. It can then proceed to
read the value of bal, from the database, increment it by £100, and write the new value
back to the database. When the rollback is executed, the updates of transaction T, are
undone and the value of bal, in the database is returned to its original value of £100. When
T} starts, it also requests an exclusive lock on bal,. However, because the data item bal, is
currently exclusively locked by T,, the request is not immediately granted and T; has
to wait until the lock is released by T,. This occurs only once the rollback of T, has been
completed.

566

Figure 19.12
Preventing the
uncommitted
dependency
problem.

Figure 19.13
Preventing the
inconsistent
analysis probiem.

Chapter 19 I Transaction Management

Ty

begin_transaction
write_lock(baly)
read(bal,)
bal, = bal, + 100
write(bal,)
rollback/unlock(bal,)

Time T

3}

7}

t3

ty begin_transaction

ts write_lock(bal,)
ts WAIT

ty read(bal,)

tg bal, = bal, - 10
ty write(bal,)

tio commit/unlock(baly)

bal,

100
100
100
100
200
100
100
100

90

90

—

I Example 19.8 Preventing the inconsistent analysis problem using 2PL

A solution to the inconsistent analysis problem is shown in Figure 19.13. To prevent this
problem occurring, Ts must precede its reads by exclusive locks, and Tg must precede its
reads with shared locks. Therefore, when T starts it requests and obtains an exclusive lock
on bal,. Now, when Ty tries to share lock bal, the request is not immediately granted and

T, has to wait until the lock is released, which is when T5 commits.

Time

4
42

4
2
ti3
14
s
Y6
tiy
tg
tio
t20

Ts

begin_transaction
write_lock(bal,)
read(bal,)
bal, = bal, - 10
write(bal,)
write_lock(bal,)
read(bal;)
bal, = bal, + 10
write(bal,)
commit/unlock(bal,, bal,)

Ts

begin_transaction

sum =0

read_lock(bal,)
WAIT

WAIT

‘WAIT

WAIT

WAIT

WAIT

WAIT

read(bal,)

sum = sum + bal,
read_lock(baly)
read(baly)

sum = sum + baly
read_lock(bal,)
read(bal,)

sum = sum + bal,

commit/unlock(bal,, baly, bal,)

baly

100
100
100
100
100
90
90
90
90
90
90
90
90
90
920
90
90
90
90
90

baly

50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50

bal,

25
25
25
25
25
25
25
25
25
35
35
35
35
35
35
35
35
35
35
35

sum

(=200 = R~ T R = Y — T = T - B~ T — T Y

O \D O
(=T = =1

140
140
140
175
175

19.2 Concurrency Control 567

It can be proved that if every transaction in a schedule follows the two-phase lock-
ing protocol, then the schedule is guaranteed to be conflict serializable (Eswaran et al.,
1976). However, while the two-phase locking protocol guarantees serializability, problems
can occur with the interpretation of when locks can be released, as the next example
shows.

I Example 19.9 Cascading rollback

Consider a schedule consisting of the three transactions shown in Figure 19.14, which con-
forms to the two-phase locking protocol. Transaction T,, obtains an exclusive lock on bal,
then updates it using bal,, which has been obtained with a shared lock, and writes the value
of bal, back to the database before releasing the lock on bal,. Transaction T, then obtains
an exclusive lock on bal,, reads the value of bal, from the database, updates it, and writes
the new value back to the database before releasing the lock. Finally, T\ share locks bal,
and reads it from the database. By now, T, has failed and has been rolled back. However,
since T;s is dependent on T, (it has read an item that has been updated by T,,), T,s must
also be rolled back. Similarly, T, is dependent on T, so it too must be rolled back. This
situation, in which a single transaction leads to a series of rollbacks, is called cascading
rollback.

Figure 19.14

e on Tis Tis Cascading rollback
ty e begin_transaction with 2PL.
ty write_lock(baly) T e

t3 read(bal,)

7 read_lock(baly)

ts read(baly)

ts bal, = bal, + bal,

t7 write(balx)

tg unlock(baly) begin_transaction

t H write_lock(baly)

tio i read(baly)

t i baly = bal, + 100

tz H write(baly)

ti3 H unlock(baly)

ty i :

s rollback

g : begin_transaction

ti7 ; - read_lock(bal,)

tis rollback :

tg rollback

|

568

Chapter 19 B Transaction Management

Cascading rollbacks are undesirable since they potentially lead to the undoing of a
significant amount of work. Clearly, it would be useful if we could design protocols that
prevent cascading rollbacks. One way to achieve this with two-phase locking is to leave
the release of all locks until the end of the transaction, as in the previous examples. In this
way, the problem illustrated here would not occur, as Ts would not obtain its exclusive
lock until after T,, had completed the rollback. This is called rigorous 2PL. It can be
shown that with rigorous 2PL, transactions can be serialized in the order in which they
commit. Another variant of 2PL, called strict 2PL, only holds exclusive locks until the end
of the transaction. Most database systems implement one of these two variants of 2PL.

Another problem with two-phase locking, which applies to all locking-based schemes,
is that it can cause deadlock, since transactions can wait for locks on data items. If
two transactions wait for locks on items held by the other, deadlock will occur and the
deadlock detection and recovery scheme described in the Section 19.2.4 is needed. It is
also possible for transactions to be in livelock, that is left in a wait state indefinitely,
unable to acquire any new locks, although the DBMS is not in deadlock. This can happen
if the waiting algorithm for transactions is unfair and does not take account of the time that
transactions have been waiting. To avoid livelock, a priority system can be used, whereby
the longer a transaction has to wait, the higher its priority, for example, a first-come-first-
served queue can be used for waiting transactions.

Concurrency control with index structures

Concurrency control for an index structure (see Appendix C) can be managed by treating
each page of the index as a data item and applying the two-phase locking protocol
described above. However, since indexes are likely to be frequently accessed, particularly
the higher levels of trees (as searching occurs from the root downwards), this simple con-
currency control strategy may lead to high lock contention. Therefore, a more efficient
locking protocol is required for indexes. If we examine how tree-based indexes are tra-
versed, we can make the following two observations:

m The search path starts from the root and moves down to the leaf nodes of the tree but
the search never moves back up the tree. Thus, once a lower-level node has been
accessed, the higher-level nodes in that path will not be used again.

® When a new index value (a key and a pointer) is being inserted into a leaf node, then
if the node is not full, the insertion will not cause changes to the higher-level nodes.
This suggests that we only have to exclusively lock the leaf node in such a case, and
only exclusively lock higher-level nodes if a node is full and has to be split.

Based on these observations, we can derive the following locking strategy:

m For searches, obtain shared locks on nodes starting at the root and proceeding down-
wards along the required path. Release the lock on a node once a lock has been obtained
on the child node.

® For insertions, a conservative approach would be to obtain exclusive locks on all nodes
as we descend the tree to the leaf node to be modified. This ensures that a split in the
leaf node can propagate all the way up the tree to the root. However, if a child node is
not full, the lock on the parent node can be released. A more optimistic approach would

19.2 Concurrency Control 569

be to obtain shared locks on all nodes as we descend to the leaf node to be modified,
where we obtain an exclusive lock on the leaf node itself. If the leaf node has to split,
we upgrade the shared lock on the parent node to an exclusive lock. If this node also has
to split, we continue to upgrade the locks at the next higher level. In the majority of
cases, a split is not required making this a better approach.

For further details on the performance of concurrency control algorithms for trees, the
interested reader is referred to Srinivasan and Carey (1991).

Latches

DBMS:s also support another type of lock called a latch, which is held for a much shorter
duration than a normal lock. A latch can be used before a page is read from, or written to,
disk to ensure that the operation is atomic. For example, a latch would be obtained to write
a page from the database buffers to disk, the page would then be written to disk, and the
latch immediately unset. As the latch is simply to prevent conflict for this type of access,
latches do not need to conform to the normal concurrency control protocol such as two-
phase locking.

Deadlock

Deadlock An impasse that may result when two (or more) transactions are each
waiting for locks to be released that are held by the other.

Figure 19.15 shows two transactions, T, and T, that are deadlocked because each is
waiting for the other to release a lock on an item it-holds. At time t,, transaction T,
requests and obtains an exclusive lock on item bal,, and at time t, transaction T,z obtains
an exclusive lock on item bal,. Then at ts, T;; requests an exclusive lock on item bal,. Since
T;s holds a lock on bal,, transaction T,, waits. Meanwhile, at time t,, T, requests a lock on
item bal,, which is held by transaction T,,. Neither transaction can continue because each
is waiting for a lock it cannot obtain until the other completes. Once deadlock occurs, the

Time Tyy Tig

) begin_transaction

ty write_lock(bal,) begin_transaction

ts read(bal,) write_tock(baly)

ty bal, =bal, — 10 read(bal,)

ts write(balx) baly, = baly, + 100
ts write_lock(ba!y) write(baly)

t; WAIT write_lock(baly)

tg WAIT WAIT

ty WAIT WAIT

Yo ; WAIT

tyy

19.2.4

Figure 19.15
Deadlock between
two transactions.

570

Chapter 19 I Transaction Management

applications involved cannot resolve the problem. Instead, the DBMS has to recognize that
deadlock exists and break the deadlock in some way.

Unfortunately, there is only one way to break deadlock: abort one or more of the trans-
actions. This usually involves undoing all the changes made by the aborted transaction(s).
In Figure 19.15, we may decide to abort transaction T)g. Once this is complete, the locks
held by transaction T are released and T,, is able to continue again. Deadlock should be
transparent to the user, so the DBMS should automatically restart the aborted transaction(s).

There are three general techniques for handling deadlock: timeouts, deadlock prevention,
and deadlock detection and recovery. With timeouts, the transaction that has requested a
lock waits for at most a specified period of time. Using deadlock prevention, the DBMS
looks ahead to determine if a transaction would cause deadlock, and never allows dead-
lock to occur. Using deadlock detection and recovery, the DBMS allows deadlock to
occur but recognizes occurrences of deadlock and breaks them. Since it is more difficult
to prevent deadlock than to use timeouts or testing for deadlock and breaking it when it
occurs, systems generally avoid the deadlock prevention method.

Timeouts

A simple approach to deadlock prevention is based on lock timeouts. With this approach,
a transaction that requests a lock will wait for only a system-defined period of time. If the
lock has not been granted within this period, the lock request times out. In this case, the
DBMS assumes the transaction may be deadlocked, even though it may not be, and it
aborts and automatically restarts the transaction. This is a very simple and practical solu-
tion to deadlock prevention and is used by several commercial DBMSs.

Deadlock prevention

Another possible approach to deadlock prevention is to order transactions using trans-
action timestamps, which we discuss in Section 19.2.5. Two algorithms have been proposed
by Rosenkrantz ez al. (1978). One algorithm, Wait-Die, allows only an older transaction
to wait for a younger one, otherwise the transaction is aborted (dies) and restarted with
the same timestamp, so that eventually it will become the oldest active transaction and will
not die. The second algorithm, Wound-Wait, uses a symmetrical approach: only a younger
transaction can wait for an older one. If an older transaction requests a lock held by a
younger one, the younger one is aborted (wounded).

Deadlock detection

Deadlock detection is usually handled by the construction of a wait-for graph (WFG)
that shows the transaction dependencies, that is transaction T, is dependent on T; if trans-
action T; holds the lock on a data item that T, is waiting for. The WFG is a directed graph
G = (N, E) that consists of a set of nodes N and a set of directed edges E, which is con-
structed as follows:

m Create a node for each transaction.

m Create a directed edge T, — T;, if transaction T; is waiting to lock an item that is
currently locked by T,

19.2 Concurrency Control 571

Deadlock exists if and only if the WFG contains a cycle (Holt, 1972). Figure 19.16
shows the WFG for the transactions in Figure 19.15. Clearly, the graph has a cycle in it
(T\; = Tis > T)), so we can conclude that the system is in deadlock.

Frequency of deadlock detection

Since a cycle in the wait-for graph is a necessary and sufficient condition for deadlock to
exist, the deadlock detection algorithm generates the WFG at regular intervals and examines
it for a cycle. The choice of time interval between executions of the algorithm is import-
ant. If the interval chosen is too small, deadlock detection will add considerable overhead;
if the interval is too large, deadlock may not be detected for a long period. Alternatively,
a dynamic deadlock detection algorithm could start with an initial interval size. Each time
no deadlock is detected, the detection interval could be increased, for example, to twice
the previous interval, and each time deadlock is detected, the interval could be reduced,
for example, to half the previous interval, subject to some upper and lower limits.

Recovery from deadlock detection

As we mentioned above, once deadlock has been detected the DBMS needs to abort one
or more of the transactions. There are several issues that need to be considered:

(1) Choice of deadlock victim In some circumstances, the choice of transactions to abort
may be obvious. However, in other situations, the choice may not be so clear. In such
cases, we would want to abort the transactions that incur the minimum costs. This may
take into consideration:

(a) how long the transaction has been running (it may be better to abort a transaction
that has just started rather than one that has been running for some time);

(b) how many data items have been updated by the transaction (it would be better to
abort a transaction that has made little change to the database rather than one that
has made significant changes to the database);

(c) how many data items the transaction is still to update (it would be better to abort
a transaction that has many changes still to make to the database rather than one
that has few changes to make). Unfortunately, this may not be something that the
DBMS would necessarily know.

(2) How far to roll a transaction back Having decided to abort a particular transaction, we
have to decide how far to roll the transaction back. Clearly, undoing all the changes made
by a transaction is the simplest solution, although not necessarily the most efficient. It
may be possible to resolve the deadlock by rolling back only part of the transaction.

Figure 19.16
WFG showing
deadlock between
two transactions.

572

Chapter 19 B Transaction Management

19.2.5

(3) Avoiding starvation Starvation occurs when the same transaction is always chosen
as the victim, and the transaction can never complete. Starvation is very similar to
livelock mentioned in Section 19.2.3, which occurs when the concurrency control
protocol never selects a particular transaction that is waiting for a lock. The DBMS
can avoid starvation by storing a count of the number of times a transaction has been
selected as the victim and using a different selection criterion once this count reaches
some upper limit.

Timestamping Methods

The use of locks, combined with the two-phase locking protocol, guarantees serializabil-
ity of schedules. The order of transactions in the equivalent serial schedule is based on the
order in which the transactions lock the items they require. If a transaction needs an item
that is already locked, it may be forced to wait until the item is released. A different
approach that also guarantees serializability uses transaction timestamps to order trans-
action execution for an equivalent serial schedule.

Timestamp methods for concurrency control are quite different from locking methods.
No locks are involved, and therefore there can be no deadlock. Locking methods generally
prevent conflicts by making transactions wait. With timestamp methods, there is no wait-
ing: transactions involved in conflict are simply rolled back and restarted.

Timestamp A unique identifier created by the DBMS that indicates the relative
starting time of a transaction.

Timestamps can be generated by simply using the system clock at the time the trans-
action started, or, more normally, by incrementing a logical counter every time a new
transaction starts.

Timestamping A concurrency control protocol that orders transactions in such a
way that older transactions, transactions with smaller timestamps,
get priority in the event of conflict.

With timestamping, if a transaction attempts to read or write a data item, then the read
or write is only allowed to proceed if the last update on that data item was carried out by
an older transaction. Otherwise, the transaction requesting the read/write is restarted and
given a new timestamp. New timestamps must be assigned to restarted transactions to pre-
vent their being continually aborted and restarted. Without new timestamps, a transaction
with an old timestamp might not be able to commit owing to younger transactions having
already committed.

Besides timestamps for transactions, there are timestamps for data items. Each data item
contains a read_timestamp, giving the timestamp of the last transaction to read the item,
and a write_timestamp, giving the timestamp of the last transaction to write (update) the
item. For a transaction T with timestamp ts(T), the timestamp ordering protocol works as
follows.

19.2 Concurrency Control

(1) Transaction T issues a read(x)

(a) Transaction T asks to read an item () that has already been updated by a younger
(later) transaction, that is ts(T) < write_timestamp(x). This means that an earlier
transaction is trying to read a value of an item that has been updated by a later
transaction. The earlier transaction is too late to read the previous outdated value,
and any other values it has acquired are likely to be inconsistent with the updated
value of the data item. In this situation, transaction T must be aborted and
restarted with a new (later) timestamp.

(b) Otherwise, ts(T) = write_timestamp(x), and the read operation can proceed. We
set read_timestamp(x) = max(ts(T), read_timestamp(x)).

(2) Transaction T issues a write(x)

(@) Transaction T asks to write an item (x) whose value has already been read by a
younger transaction, that is ts(T) < read_timestamp(x). This means that a later trans-
action is already using the current value of the item and it would be an error to
update it now. This occurs when a transaction is late in doing a write and a younger
transaction has already read the old value or written a new one. In this case, the
only solution is to roll back transaction T and restart it using a later timestamp.,

(b) Transaction T asks to write an item (x) whose value has already been written by a
younger transaction, that is ts(T) < write_timestamp(x). This means that trans-
action T is attempting to write an obsolete value of data item x. Transaction T
should be rolled back and restarted using a later timestamp.

(c) Otherwise, the write operation can proceed. We set write_timestamp(x) = ts(T).

This scheme, called basic timestamp ordering, guarantees that transactions are conflict
serializable, and the results are equivalent to a serial schedule in which the transactions
are executed in chronological order of the timestamps. In other words, the results will be
as if all of transaction 1 were executed, then all of transaction 2, and so on, with no inter-
leaving. However, basic timestamp ordering does not guarantee recoverable schedules.
Before we show how these rules can be used to generate a schedule using timestamping,
we first examine a slight variation to this protocol that provides greater concurrency.

Thomas’s write rule

A modification to the basic timestamp ordering protocol that relaxes conflict serializabil-
ity can be used to provide greater concurrency by rejecting obsolete write operations
(Thomas, 1979). The extension, known as Thomas’s write rule, modifies the checks for
a write operation by transaction T as follows:

(a) Transaction T asks to write an item (x) whose value has already been read by a
younger transaction, that is ts(T) < read_timestamp(x). As before, roll back transaction
T and restart it using a later timestamp.

(b) Transaction T asks to write an item (x) whose value has already been written by a
younger transaction, that is ts(T) < write_timestamp(x). This means that a later trans-
action has already updated the value of the item, and the value that the older trans-
action is writing must be based on an obsolete value of the item. In this case, the write
operation can safely be ignored. This is sometimes known as the ignore obsolete
write rule, and allows greater concurrency.

573

574 Chapter 19 I Transaction Management

(c) Otherwise, as before, the write operation can proceed. We set write_timestamp(x) =
ts(T).

The use of Thomas’s write rule allows schedules to be generated that would not have been
possible under the other concurrency protocols discussed in this section. For example, the
schedule shown in Figure 19.10 is not conflict serializable: the write operation on bal, by
transaction T, following the write by T, would be rejected, and T,, would need to be rolled
back and restarted with a new timestamp. In contrast, using Thomas’s write rule, this view
serializable schedule would be valid without requiring any transactions to be rolled back.

We examine another timestamping protocol that is based on the existence of multiple
versions of each data item in the next section.

I Example 19.10 Basic timestamp ordering

Three transactions are executing concurrently, as illustrated in Figure 19.17. Transaction
T,o has a timestamp of ts(T);), Ty has a timestamp of ts(T,,), and T, has a timestamp of
ts(T5,), such that ts(Tg) < ts(T,,) < ts(T,). At time tg, the write by transaction T, violates
the first write rule and so T, is aborted and restarted at time t,,. Also at time t,,, the write
by transaction T, can safely be ignored using the ignore obsolete write rule, as it would
have been overwritten by the write of transaction T, at time t,,.

Figure 19.17

Timestamping Tume Op T T T
exampie. t begin_transaction
ty read(baly) read(bal,)
ts bal, = bal, + 10 bal, = bal, + 10
ty write(bal,) write(baly) begin_transaction
ts read(baly) read(baly)
ts baly, = baly +20 baly, = bal, +20 begin_transaction
t, read(baly) read(baly)
tg write(baly) write(baly)+
ty bal, = baly + 30 baly = baly + 30
tio write(baly) write(baly)
th bal, = 100 bal, = 100
2 write(bal,) write(bal;)
t13 bal, = 50 bal, = 50 commit
ty write(bal,) write(bal,)* begin_transaction i
t1s read(baly) commit read(baly)
ti baly, = baly + 20 bal, = baly +20
ty7 write(baly) write(baly)
tig commit

* At time tg, the write by transaction T,q violates the first timestamping write rule described above and therefore is
aborted and restarted at time t,.
* At time ty,, the write by transaction Tg can safely be ignored using the ignore obsolete write rule, as it would have

been overwritten by the write of transaction T, at time t,. l

19.2 Concurrency Control 575

All
schedules

Comparison of methods

Figure 19.18 illustrates the relationship between conflict serializability (CS), view serial-
izability (VS), two-phase locking (2PL), and timestamping (TS). As can be seen, view
serializability encompasses the other three methods, conflict serializability encompasses
2PL and timestamping, while 2PL and timestamping overlap. Note, in the last case, that
there are schedules common to both 2PL and timestamping but, equally well, there are
also schedules that can be produced by 2PL but not timestamping and vice versa.

Multiversion Timestamp Ordering

Versioning of data can also be used to increase concurrency, since different users may
work concurrently on different versions of the same object instead of having to wait for
each others’ transactions to complete. In the event that the work appears faulty at any
stage, it should be possible to roll back the work to some valid state. Versions have been
used as an alternative to the nested and multilevel concurrency control protocols we dis-
cuss in Section 19.4 (for example, see Beech and Mahbod, 1988; Chou and Kim, 1986,
1988). In this section we briefly examine one concurrency control scheme that uses ver-
sions to increase concurrency based on timestamps (Reed, 1978; 1983). In Section 19.5
we briefly discuss how Oracle uses this scheme for concurrency control.

The basic timestamp ordering protocol discussed in the previous section assumes that
only one version of a data item exists, and so only one transaction can access a data item
at a time. This restriction can be relaxed if we allow multiple transactions to read and write
different versions of the same data item, and ensure that each transaction sees a consistent
set of versions for all the data items it accesses. In multiversion concurrency control, each
write operation creates a new version of a data item while retaining the old version. When
a transaction attempts to read a data item, the system selects one of the versions that
ensures serializability.

For each data item x, we assume that the database holds » versions x;, X, . . . , x,. For
each version i, the system stores three values:

Figure 19.18
Comparison of
confiict serializability
(CS), view
serializability

(VS), two-phase
locking (2PL), and
timestamping (TS).

19.2.6

576

Chapter 19 I Transaction Management

19.2.7

m the value of version x;

@ read_timestamp(x;), which is the largest timestamp of all transactions that have suc-
cessfully read version x;;

W write_timestamp(x;), which is the timestamp of the transaction that created version X;.

Let ts(T) be the timestamp of the current transaction. The multiversion timestamp
ordering protocol uses the following two rules to ensure serializability:

(1) Transaction T issues a write(x) If transaction T wishes to write data item X, wWe must
ensure that the data item has not been read already by some other transaction T; such
that ts(T) < ts(T)). If we allow transaction T to perform this write operation, then for
serializability its change should be seen by T, but clearly T, which has already read
the value, will not see T’s change.

Thus, if version x; has the largest write timestamp of data item x that is less than or
equal to ts(T) (that is, write_timestamp(x;) < ts(T)) and read_timestamp(x) > ts(T),
transaction T must be aborted and restarted with a new timestamp. Otherwise, we
create a new version x; of x and set read_timestamp(x;) = write_timestamp(x,) = ts(T).

(2) TransactionT issues aread(x) If transaction T wishes to read data item X, WE must return
the version x; that has the largest write timestamp of data item x that is less than or equal to
ts(T). In other words, return write_timestamp(x;) such that write_timestamp(x;) < ts(T).
Set the value of read_timestamp(x;) = max(ts(T), read_timestamp(x;)). Note that with
this protocol a read operation never fails.

Versions can be deleted once they are no longer required. To determine whether a version
is required, we find the timestamp of the oldest transaction in the system. Then, for any
two versions x; and x; of data item x with write timestamps less than this oldest timestamp,
we can delete the older version.

Optimistic Techniques

In some environments, conflicts between transactions are rare, and the additional pro-
cessing required by locking or timestamping protocols is unnecessary for many of the
transactions. Optimistic techniques are based on the assumption that conflict is rare,
and that it is more efficient to allow transactions to proceed without imposing delays to
ensure serializability (Kung and Robinson, 1981). When a transaction wishes to commit,
a check is performed to determine whether conflict has occurred. If there has been a
conflict, the transaction must be rolled back and restarted. Since the premise is that conflict
occurs very infrequently, rollback will be rare. The overhead involved in restarting a
transaction may be considerable, since it effectively means redoing the entire transaction.
This could be tolerated only if it happened very infrequently, in which case the majority
of transactions will be processed without being subjected to any delays. These techniques
potentially allow greater concurrency than traditional protocols since no locking is
required.

There are two or three phases to an optimistic concurrency control protocol, depending
on whether it is a read-only or an update transaction:

19.2 Concurrency Control

® Read phase This extends from the start of the transaction until immediately before the
commit. The transaction reads the values of all data items it needs from the database and
stores them in local variables. Updates are applied to a local copy of the data, not to the
database itself.

m Validation phase This follows the read phase. Checks are performed to ensure serial-
izability is not violated if the transaction updates are applied to the database. For a
read-only transaction, this consists of checking that the data values read are still the cur-
rent values for the corresponding data items. If no interference occurred, the transaction
is committed. If interference occurred, the transaction is aborted and restarted. For a
transaction that has updates, validation consists of determining whether the current
transaction leaves the database in a consistent state, with serializability maintained. If
not, the transaction is aborted and restarted.

® Write phase This follows the successful validation phase for update transactions.
During this phase, the updates made to the local copy are applied to the database.

The validation phase examines the reads and writes of transactions that may cause inter-
ference. Each transaction T is assigned a timestamp at the start of its execution, start(T),
one at the start of its validation phase, validation(T), and one at its finish time, Sfinish(T),
including its write phase, if any. To pass the validation test, one of the following must
be true:

(1) All transactions S with earlier timestamps must have finished before transaction T
started; that is, finish(S) < start(T).
(2) If transaction T starts before an earlier one S finishes, then:

(a) the set of data items written by the earlier transaction are not the ones read by the
current transaction; and

(b) the earlier transaction completes its write phase before the current transaction
enters its validation phase, that is start(T) < finish(S) < validation(T).

Rule 2(a) guarantees that the writes of an earlier transaction are not read by the current
transaction; rule 2(b) guarantees that the writes are done serially, ensuring no conflict.

Although optimistic techniques are very efficient when there are few conflicts, they can
result in the rollback of individual transactions. Note that the rollback involves only a local
copy of the data so there are no cascading rollbacks, since the writes have not actually
reached the database. However, if the aborted transaction is of a long duration, valuable pro-
cessing time will be lost since the transaction must be restarted. If rollback occurs often,
it is an indication that the optimistic method is a poor choice for concurrency control in
that particular environment.

Granularity of Data Iitems

Granularity The size of data items chosen as the u_n/"t of profect/'on' '.by_a_‘c_-';o:nc__:Ur-
; rency: control protocol. : ; e

19.2.8

577

578

Chapter 19 I Transaction Management

All the concurrency control protocols that we have discussed assume that the database
consists of a number of ‘data items’, without explicitly defining the term. Typically, a data
item is chosen to be one of the following, ranging from coarse to fine, where fine granu-
larity refers to small item sizes and coarse granularity refers to large item sizes:

m the entire database;
m afile;

W a page (sometimes called an area or database space — a section of physical disk in which
relations are stored);

m arecord,;
m a field value of a record.

The size or granularity of the data item that can be locked in a single operation has a
significant effect on the overall performance of the concurrency control algorithm. How-
ever, there are several tradeoffs that have to be considered in choosing the data item size.
We discuss these tradeoffs in the context of locking, although similar arguments can be
made for other concurrency control techniques.

Consider a transaction that updates a single tuple of a relation. The concurrency control
algorithm might allow the transaction to lock only that single tuple, in which case the
granule size for locking is a single record. On the other hand, it might lock the entire
database, in which case the granule size is the entire database. In the second case, the
granularity would prevent any other transactions from executing until the lock is released.
This would clearly be undesirable. On the other hand, if a transaction updates 95% of the
records in a file, then it would be more efficient to allow it to lock the entire file rather than
to force it to lock each record separately. However, escalating the granularity from field or
record to file may increase the likelihood of deadlock occurring.

Thus, the coarser the data item size, the lower the degree of concurrency permitted. On
the other hand, the finer the item size, the more locking information that needs to be stored.
The best item size depends upon the nature of the transactions. If a typical transaction
accesses a small number of records, it is advantageous to have the data item granularity at
the record level. On the other hand, if a transaction typically accesses many records of the
same file, it may be better to have page or file granularity so that the transaction considers
all those records as one (or a few) data items.

Some techniques have been proposed that have dynamic data item sizes. With these
techniques, depending on the types of transaction that are currently executing, the data
item size may be changed to the granularity that best suits these transactions. Ideally, the
DBMS should support mixed granularity with record, page, and file level locking. Some
systems automatically upgrade locks from record or page to file if a particular transaction
is locking more than a certain percentage of the records or pages in the file.

Hierarchy of granularity

We could represent the granularity of locks in a hierarchical structure where each node
represents data items of different sizes, as shown in Figure 19.19. Here, the root node

19.2 Concurrency Control 579

Level 0

Level 1

Level 2

Level 3

Level 4

represents the entire database, the level 1 nodes represent files, the level 2 nodes represent
pages, the level 3 nodes represent records, and the level 4 leaves represent individual
fields. Whenever a node is locked, all its descendants are also locked. For example, if a
transaction locks a page, Page,, all its records (Record, and Record,) as well as all their
fields (Field, and Field,) are also locked. If another transaction requests an incompatible
lock on the same node, the DBMS clearly knows that the lock cannot be granted.

If another transaction requests a lock on any of the descendants of the locked node, the
DBMS checks the hierarchical path from the root to the requested node to determine if any
of its ancestors are locked before deciding whether to grant the lock. Thus, if the request
is for an exclusive lock on record Record,, the DBMS checks its parent (Page,), its grand-
parent (File,), and the database itself to determine if any of them are locked. When it finds
that Page, is already locked, it denies the request.

Additionally, a transaction may request a lock on a node and a descendant of the node
is already locked. For example, if a lock is requested on F, ile,, the DBMS checks every
page in the file, every record in those pages, and every field in those records to determine
if any of them are locked.

Figure 19.19
Levels of locking.

e

580

Chapter 19 B Transaction Management

Table 19.1 Lock compatibility table for multiple-granularity locking.

IS IX S SIX X
IS v/ v 4 v X
IX 4 v X X X
hY v/ X v/ X X
SIX 4 X X X X
X X X X X X

v = compatible, X = incompatible

Multiple-granularity locking

To reduce the searching involved in locating locks on descendants, the DBMS can use
another specialized locking strategy called multiple-granularity locking. This strategy
uses a new type of lock called an intention lock (Gray et al., 1975). When any node is
locked, an intention lock is placed on all the ancestors of the node. Thus, if some descend-
ant of File, (in our example, Page,) is locked and a request is made for a lock on File,,
the presence of an intention lock on File, indicates that some descendant of that node is
already locked.

Intention locks may be either Shared (read) or eXclusive (write). An intention shared
(IS) lock conflicts only with an exclusive lock; an intention exclusive (IX) lock conflicts
with both a shared and an exclusive lock. In addition, a transaction can hold a shared and
intention exclusive (SIX) lock that is logically equivalent to holding both a shared and an
IX lock. A SIX lock conflicts with any lock that conflicts with either a shared or IX lock;
in other words, a SIX lock is compatible only with an IS lock. The lock compatibility
table for multiple-granularity locking is shown in Table 19.1.

To ensure serializability with locking levels, a two-phase locking protocol is used as
follows:

m No lock can be granted once any node has been unlocked.

@ No node may be locked until its parent is locked by an intention lock.

® No node may be unlocked until all its descendants are unlocked.

In this way, locks are applied from the root down using intention locks until the node

requiring an actual read or exclusive lock is reached, and locks are released from the
bottom up. However, deadlock is still possible and must be handled as discussed

previously.

m Database Recovery

Database The process of restoring the database to a correct state in the event
recovery of a failure.

19.3 Database Recovery

At the start of this chapter we introduced the concept of database recovery as a service
that should be provided by the DBMS to ensure that the database is reliable and remains
in a consistent state in the presence of failures. In this context, reliability refers to both
the resilience of the DBMS to various types of failure and its capability to recover from
them. In this section we consider how this service can be provided. To gain a better under-
standing of the potential problems we may encounter in providing a reliable system, we
start by examining the need for recovery and the types of failure that can occur in a
database environment.

The Need for Recovery

The storage of data generally includes four different types of media with an increasing
degree of reliability: main memory, magnetic disk, magnetic tape, and optical disk. Main
memory is volatile storage that usually does not survive system crashes. Magnetic disks
provide online non-volatile storage. Compared with main memory, disks are more reli-
able and much cheaper, but slower by three to four orders of magnitude. Magnetic tape
is an offline non-volatile storage medium, which is far more reliable than disk and fairly
inexpensive, but slower, providing only sequential access. Optical disk is more reliable
than tape, generally cheaper, faster, and providing random access. Main memory is also
referred to as primary storage and disks and tape as secondary storage. Stable storage
represents information that has been replicated in several non-volatile storage media
(usually disk) with independent failure modes. For example, it may be possible to simulate
stable storage using RAID (Redundant Array of Independent Disks) technology, which
guarantees that the failure of a single disk, even during data transfer, does not result in loss
of data (see Section 18.2.6).

There are many different types of failure that can affect database processing, each
of which has to be dealt with in a different manner. Some failures affect main memory
only, while others involve non-volatile (secondary) storage. Among the causes of failure
are:

® system crashes due to hardware or software errors, resulting in loss of main memory;

® media failures, such as head crashes or unreadable media, resulting in the loss of parts
of secondary storage;

® application software errors, such as logical errors in the program that is accessing the
database, which cause one or more transactions to fail;

® natural physical disasters, such as fires, floods, earthquakes, or power failures;

m carelessness or unintentional destruction of data or facilities by operators or users;

m sabotage, or intentional corruption or destruction of data, hardware, or software
facilities.

Whatever the cause of the failure, there are two principal effects that we need to
consider: the loss of main memory, including the database buffers, and the loss of the
disk copy of the database. In the remainder of this chapter we discuss the concepts and
techniques that can minimize these effects and allow recovery from failure.

19.3.1

581

582

Chapter 19 1 Transaction Management

19.3.2

Transactions and Recovery

Transactions represent the basic unit of recovery in a database system. It is the role of the
recovery manager to guarantee two of the four ACID properties of transactions, namely
atomicity and durability, in the presence of failures. The recovery manager has to ensure
that, on recovery from failure, either all the effects of a given transaction are permanently
recorded in the database or none of them are. The situation is complicated by the fact that
database writing is not an atomic (single-step) action, and it is therefore possible for a
transaction to have committed but for its effects not to have been permanently recorded in
the database, simply because they have not yet reached the database.

Consider again the first example of this chapter, in which the salary of a member of
staff is being increased, as shown at a high level in Figure 19.1(a). To implement the read
operation, the DBMS carries out the following steps:

m find the address of the disk block that contains the record with primary key value x;
m transfer the disk block into a database buffer in main memory;
B copy the salary data from the database buffer into the variable salary.

For the write operation, the DBMS carries out the following steps:

8 find the address of the disk block that contains the record with primary key value x;
m transfer the disk block into a database buffer in main memory;

® copy the salary data from the variable salary into the database buffer;

8 write the database buffer back to disk.

The database buffers occupy an area in main memory from which data is transferred to
and from secondary storage. It is only once the buffers have been flushed to secondary
storage that any update operations can be regarded as permanent. This flushing of the
buffers to the database can be triggered by a specific command (for example, transaction
commit) or automatically when the buffers become full. The explicit writing of the buffers
to secondary storage is known as force-writing.

If a failure occurs between writing to the buffers and flushing the buffers to secondary
storage, the recovery manager must determine the status of the transaction that performed
the write at the time of failure. If the transaction had issued its commit, then to ensure dur-
ability the recovery manager would have to redo that transaction’s updates to the database
(also known as rollforward).

On the other hand, if the transaction had not committed at the time of failure, then the
recovery manager would have to undo (rollback) any effects of that transaction on the
database to guarantee transaction atomicity. If only one transaction has to be undone, this
is referred to as partial undo. A partial undo can be triggered by the scheduler when a
transaction is rolled back and restarted as a result of the concurrency control protocol,
as described in the previous section. A transaction can also be aborted unilaterally, for
example, by the user or by an exception condition in the application program. When all
active transactions have to be undone, this is referred to as global undo.

19.3 Database Recovery 583

I Example 19.11 Use of UNDO/REDO

Figure 19.20 illustrates a number of concurrently executing transactions T, ..., Ts. The
DBMS starts at time t, but fails at time t,, We assume that the data for transactions T, and
T, has been written to secondary storage before the failure.

Clearly, T, and T, had not committed at the point of the crash, therefore at restart, the
recovery manager must undo transactions T, and T,. However, it is not clear to what extent
the changes made by the other (committed) transactions T, and Tshave been propagated
to the database on non-volatile storage. The reason for this uncertainty is the fact that the
volatile database buffers may or may not have been written to disk. In the absence of any
other information, the recovery manager would be forced to redo transactions T,, T, T,,
and T..

Figure 19.20
Example of
UNDO/REDO.

T, b
Ts P
T4 P

Ts

Ts

to te t

1

The management of the database buffers plays an important role in the recovery process
and we briefly discuss their management before proceeding. As we mentioned at the
start of this chapter, the buffer manager is responsible for the efficient management of
the database buffers that are used to transfer pages to and from secondary storage. This
involves reading pages from disk into the buffers until the buffers become full and then
using a replacement strategy to decide which buffer(s) to force-write to disk to make space
for new pages that need to be read from disk. Example replacement strategies are first-
in-first-out (FIFO) and least recently used (LRU). In addition, the buffer manager should
not read a page from disk if it is already in a database buffer.

One approach is to associate two variables with the management information for each
database buffer: pinCount and dirty, which are initially set to zero for each database buffer.
When a page is requested from disk, the buffer manager will check to see whether the page
is already in one of the database buffers. If it is not, the buffer manager will:

Buffer management

(1) use the replacement strategy to choose a buffer for replacement (which we will call
the replacement buffer) and increment its pinCount. The requested page is now pinned

584

Chapter 19 1 Transaction Management

19.3.3

in the database buffer and cannot be written back to disk yet. The replacement strat-
egy will not choose a buffer that has been pinned;

(2) if the dirty variable for the replacement buffer is set, it will write the buffer to disk;

(3) read the page from disk into the replacement buffer and reset the buffer’s dirty variable
to zero.

If the same page is requested again, the appropriate pinCount is incremented by 1. When
the system informs the buffer manager that it has finished with the page, the appropriate
pinCount is decremented by 1. At this point, the system will also inform the buffer manager
if it has modified the page and the dirty variable is set accordingly. When a pinCount reaches
zero, the page is unpinned and the page can be written back to disk if it has been modified
(that is, if the dirty variable has been set).

The following terminology is used in database recovery when pages are written back to
disk:

® A steal policy allows the buffer manager to write a buffer to disk before a transaction
commits (the buffer is unpinned). In other words, the buffer manages ‘steals’ a page
from the transaction. The alternative policy is no-steal.

m A force policy ensures that all pages updated by a transaction are immediately written
to disk when the transaction commits. The alternative policy is no-force.

The simplest approach from an implementation perspective is to use a no-steal, force
policy: with no-steal we do not have to undo changes of an aborted transaction because
the changes will not have been written to disk, and with force we do not have to redo the
changes of a committed transaction if there is a subsequent crash because all the changes
will have been written to disk at commit. The deferred update recovery protocol we dis-
cuss shortly uses a no-steal policy.

On the other hand, the steal policy avoids the need for a very large buffer space to store
all updated pages by a set of concurrent transactions, which in practice may be unrealistic
anyway. In addition, the no-force policy has the distinct advantage of not having to rewrite
a page to disk for a later transaction that has been updated by an earlier committed
transaction and may still be in a database buffer. For these reasons, most DBMSs employ
a steal, no-force policy.

Recovery Facilities

A DBMS should provide the following facilities to assist with recovery:

® a backup mechanism, which makes periodic backup copies of the database;

® logging facilities, which keep track of the current state of transactions and database
changes;

m a checkpoint facility, which enables updates to the database that are in progress to be
made permanent;

B arecovery manager, which allows the system to restore the database to a consistent state
following a failure.

19.3 Database Recovery

Backup mechanism

The DBMS should provide a mechanism to allow backup copies of the database and the
log file (discussed next) to be made at regular intervals without necessarily having to stop
the system first. The backup copy of the database can be used in the event that the database
has been damaged or destroyed. A backup can be a complete copy of the entire database or
an incremental backup, consisting only of modifications made since the last complete or
incremental backup. Typically, the backup is stored on offline storage, such as magnetic tape.

Log file

To keep track of database transactions, the DBMS maintains a special file called a log
(or journal) that contains information about all updates to the database. The log may con-
tain the following data:

m Transaction records, containing:

— transaction identifier;

— type of log record (transaction start, insert, update, delete, abort, commit);

identifier of data item affected by the database action (insert, delete, and update

operations);

before-image of the data item, that is its value before change (update and delete

operations only);

after-image of the data item, that is its value after change (insert and update opera-

tions only);

- log management information, such as a pointer to previous and next log records for
that transaction (all operations).

® Checkpoint records, which we describe shortly.

The log is often used for purposes other than recovery (for example, for performance
monitoring and auditing). In this case, additional information may be recorded in the log
file (for example, database reads, user logons, logoffs, and so on), but these are not relev-
ant to recovery and therefore are omitted from this discussion. Figure 19.21 illustrates a

Tid | Time | Operation Object Before image | After image | pPtr | nPtr
T1 [10:12 | START 0 2
T1 |10:13 | UPDATE STAFF SL21 (old value) (new value) 1 8
T2 [10:14 | START 0 4
T2 |10:16 [INSERT STAFF SG37 (new value) 3 5
T2 |10:17 | DELETE STAFF SA9 (old value) 4 6
T2 | 10:17 { UPDATE PROPERTY PGI6 | (old value) (new value) 5 9
T3 [10:18 | START 0 11
T1 | 10:18 | COMMIT 2 0
10:19 | CHECKPOINT | T2, T3
T2 |10:19 | COMMIT 6 0
T3 |{10:20 | INSERT PROPERTY PG4 (new value) 7 12
T3 [10:21 [COMMIT 11 0

Figure 19.21
A segment of a
log fite.

585

TS b A

A

586

Chapter 19 I Transaction Management

segment of a log file that shows three concurrently executing transactions T1, T2, and
T3. The columns pPtr and nPtr represent pointers to the previous and next log records for
each transaction.

Owing to the importance of the transaction log file in the recovery process, the log may
be duplexed or triplexed (that is, two or three separate copies are maintained) so that if one
copy is damaged, another can be used. In the past, log files were stored on magnetic tape
because tape was more reliable and cheaper than magnetic disk. However, nowadays
DBMSs are expected to be able to recover quickly from minor failures. This requires that
the log file be stored online on a fast direct-access storage device.

In some environments where a vast amount of logging information is generated every
day (a daily logging rate of 10* megabytes is not uncommony), it is not possible to hold all
this data online all the time. The log file is needed online for quick recovery following
minor failures (for example, rollback of a transaction following deadlock). Major failures,
such as disk head crashes, obviously take longer to recover from and may require access
to a large part of the log. In these cases, it would be acceptable to wait for parts of the log
file to be brought back online from offline storage.

One approach to handling the offlining of the log is to divide the online log into two
separate random access files. Log records are written to the first file until it reaches a high-
water mark, for example 70% full. A second log file is then opened and all log records
for new transactions are written to the second file. Old transactions continue to use the first
file until they have finished, at which time the first file is closed and transferred to offline
storage. This simplifies the recovery of a single transaction as all the log records for that
transaction are either on offline or online storage. It should be noted that the log file is a
potential bottleneck and the speed of the writes to the log file can be critical in determin-
ing the overall performance of the database system.

Checkpointing

The information in the log file is used to recover from a database failure. One difficulty
with this scheme is that when a failure occurs we may not know how far back in the log
to search and we may end up redoing transactions that have been safely written to the
database. To limit the amount of searching and subsequent processing that we need to
carry out on the log file, we can use a technique called checkpointing.

Checkpoint The point of synchronization between the database and the trans-
: action log file. All buffers are force-written to secondary storage.

Checkpoints are scheduled at predetermined intervals and involve the following
operations:

B writing all log records in main memory to secondary storage;
m writing the modified blocks in the database buffers to secondary storage;

m writing a checkpoint record to the log file. This record contains the identifiers of all
transactions that are active at the time of the checkpoint.

19.3 Database Recovery 587

If transactions are performed serially, then, when a failure occurs, we check the log file
to find the last transaction that started before the last checkpoint. Any earlier transactions
would have committed previously and would have been written to the database at the
checkpoint. Therefore, we need only redo the one that was active at the checkpoint and
any subsequent transactions for which both start and commit records appear in the log.
If a transaction is active at the time of failure, the transaction must be undone. If trans-
actions are performed concurrently, we redo all transactions that have committed since
the checkpoint and undo all transactions that were active at the time of the crash.

I Example 19.12 Use of UNDO/REDO with checkpointing

Returning to Example 19.11, if we now assume that a checkpoint occurred at point t,, then
we would know that the changes made by transactions T, and T, had been written to sec-
ondary storage. In this case, the recovery manager would be able to omit the redo for these
two transactions. However, the recovery manager would have to redo transactions T, and
Ts, which have committed since the checkpoint, and undo transactions T, and T, which

were active at the time of the crash. I

Generally, checkpointing is a relatively inexpensive operation, and it is often possible
to take three or four checkpoints an hour. In this way, no more than 15—20 minutes of work
will need to be recovered.

Recovery Techniques - 19.3.4

The particular recovery procedure to be used is dependent on the extent of the damage that
has occurred to the database. We consider two cases:

m If the database has been extensively damaged, for example a disk head crash has
occurred and destroyed the database, then it is necessary to restore the last backup copy
of the database and reapply the update operations of committed transactions using the
log file. This assumes, of course, that the log file has not been damaged as well. In
Step 5 of the physical database design methodology presented in Chapter 16, it was
recommended that, where possible, the log file be stored on a disk separate from the
main database files. This reduces the risk of both the database files and the log file being
damaged at the same time.

m If the database has not been physically damaged but has become inconsistent, for
example the system crashed while transactions were executing, then it is necessary to
undo the changes that caused the inconsistency. It may also be necessary to redo some
transactions to ensure that the updates they performed have reached secondary storage.
Here, we do not need to use the backup copy of the database but can restore the database
to a consistent state using the before- and after-images held in the log file.

588

Chapter 19 B Transaction Management

We now look at two techniques for recovery from the latter situation, that is the case
where the database has not been destroyed but is in an inconsistent state. The techniques,
known as deferred update and immediate update, differ in the way that updates are writ-
ten to secondary storage. We also look briefly at an alternative technique called shadow

paging.

Recovery technigues using deferred update

Using the deferred update recovery protocol, updates are not written to the database until
after a transaction has reached its commit point. If a transaction fails before it reaches this
point, it will not have modified the database and so no undoing of changes will be neces-
sary. However, it may be necessary to redo the updates of committed transactions as their
effect may not have reached the database. In this case, we use the log file to protect against
system failures in the following way:

m When a transaction starts, write a transaction start record to the log.

® When any write operation is performed, write a log record containing all the log data
specified previously (excluding the before-image of the update). Do not actually write
the update to the database buffers or the database itself.

& When a transaction is about to commit, write a transaction commit log record, write all
the log records for the transaction to disk, and then commit the transaction. Use the log
records to perform the actual updates to the database.

® If a transaction aborts, ignore the log records for the transaction and do not perform the
writes.

Note that we write the log records to disk before the transaction is actually committed,
so that if a system failure occurs while the actual database updates are in progress, the
log records will survive and the updates can be applied later. In the event of a failure,
we examine the log to identify the transactions that were in progress at the time of
failure. Starting at the last entry in the log file, we go back to the most recent checkpoint
record:

m Any transaction with transaction start and transaction commit log records should be
redone. The redo procedure performs all the writes to the database using the after-
image log records for the transactions, in the order in which they were written to the log.
If this writing has been performed already, before the failure, the write has no effect on
the data item, so there is no damage done if we write the data again (that is, the opera-
tion is idempotent). However, this method guarantees that we will update any data item
that was not properly updated prior to the failure.

m For any transactions with transaction start and transaction abort log records, we do
nothing since no actual writing was done to the database, so these transactions do not
have to be undone.

If a second system crash occurs during recovery, the log records are used again to restore
the database. With the form of the write log records, it does not matter how many times
we redo the writes.

19.3 Database Recovery

Recovery techniques using immediate update

Using the immediate update recovery protocol, updates are applied to the database as they
occur without waiting to reach the commit point. As well as having to redo the updates of
committed transactions following a failure, it may now be necessary to undo the effects of
transactions that had not committed at the time of failure. In this case, we use the log file
to protect against system failures in the following way:

m When a transaction starts, write a transaction start record to the log.

® When a write operation is performed, write a record containing the necessary data to the
log file.

& Once the log record is written, write the update to the database buffers.

® The updates to the database itself are written when the buffers are next flushed to
secondary storage.

m When the transaction commits, write a transaction commit record to the log.

It is essential that log records (or at least certain parts of them) are written before the
corresponding write to the database. This is known as the write-ahead log protocol. If
updates were made to the database first, and failure occurred before the log record was
written, then the recovery manager would have no way of undoing (or redoing) the opera-
tion. Under the write-ahead log protocol, the recovery manager can safely assume that, if
there is no transaction commit record in the log file for a particular transaction then that
transaction was still active at the time of failure and must therefore be undone.

If a transaction aborts, the log can be used to undo it since it contains all the old values
for the updated fields. As a transaction may have performed several changes to an item,
the writes are undone in reverse order. Regardless of whether the transaction’s writes have
been applied to the database itself, writing the before-images guarantees that the database
is restored to its state prior to the start of the transaction.

If the system fails, recovery involves using the log to undo or redo transactions:

® For any transaction for which both a transaction start and transaction commit record
appear in the log, we redo using the log records to write the after-image of updated
fields, as described above. Note that if the new values have already been written to the
database, these writes, although unnecessary, will have no effect. However, any write
that did not actually reach the database will now be performed.

8 For any transaction for which the log contains a transaction start record but not a trans-
action commit record, we need to undo that transaction. This time the log records are
used to write the before-image of the affected fields, and thus restore the database to its
state prior to the transaction’s start. The undo operations are performed in the reverse
order to which they were written to the log.

Shadow paging

An alternative to the log-based recovery schemes described above is shadow paging
(Lorie, 1977). This scheme maintains two-page tables during the life of a transaction: a
current page table and a shadow page table. When the transaction starts, the two-page

589

590

Chapter 19 I Transaction Management

tables are the same. The shadow page table is never changed thereafter, and is used to
restore the database in the event of a system failure. During the transaction, the current
page table is used to record all updates to the database. When the transaction completes,
the current page table becomes the shadow page table. Shadow paging has several advant-
ages over the log-based schemes: the overhead of maintaining the log file is eliminated,
and recovery is significantly faster since there is no need for undo or redo operations.
However, it has disadvantages as well, such as data fragmentation and the need for
periodic garbage collection to reclaim inaccessible blocks.

Advanced Transaction Models

The transaction protocols that we have discussed so far in this chapter are suitable for the
types of transaction that arise in traditional business applications, such as banking and
airline reservation systems. These applications are characterized by:

m the simple nature of the data, such as integers, decimal numbers, short character strings,
and dates;

m the short duration of transactions, which generally finish within minutes, if not seconds.

In Section 24.1 we examine the more advanced types of database application that are
emerging. For example, design applications such as Computer-Aided Design, Computer-
Aided Manufacturing, and Computer-Aided Software Engineering have some common
characteristics that are different from traditional database applications:

B A design may be very large, perhaps consisting of millions of parts, often with many
interdependent subsystem designs. '

® The design is not static but evolves through time. When a design change occurs, its
implications must be propagated through all design representations. The dynamic nature
of design may mean that some actions cannot be foreseen.

m Updates are far-reaching because of topological relationships, functional relationships,
tolerances, and so on. One change is likely to affect a large number of design objects.

m Often, many design alternatives are being considered for each component, and the
correct version for each part must be maintained. This involves some form of version
control and configuration management.

& There may be hundreds of people involved with the design, and they may work in par-
allel on multiple versions of a large design. Even so, the end-product must be consistent
and coordinated. This is sometimes referred to as cooperative engineering. Cooperation
may require interaction and sharing between other concurrent activities.

Some of these characteristics result in transactions that are very complex, access many
data items, and are of long duration, possibly running for hours, days, or perhaps even
months. These requirements force a re-examination of the traditional transaction manage-
ment protocols to overcome the following problems:

B As aresult of the time element, a long-duration transaction is more susceptible to fail-
ures. It would be unacceptable to abort this type of transaction and potentially lose a

19.4 Advanced Transaction Models 591

significant amount of work. Therefore, to minimize the amount of work lost, we require
that the transaction be recovered to a state that existed shortly before the crash.

m Again, as a result of the time element, a long-duration transaction may access (for
example, lock) a large number of data items. To preserve transaction isolation, these
data items are then inaccessible to other applications until the transaction commits. It
is undesirable to have data inaccessible for extended periods of time as this limits
concurrency.

® The longer the transaction runs, the more likely it is that deadlock will occur if a
locking-based protocol is used. It has been shown that the frequency of deadlock
increases to the fourth power of the transaction size (Gray, 1981).

m One way to achieve cooperation among people is through the use of shared data items.
However, the traditional transaction management protocols significantly restrict this
type of cooperation by requiring the isolation of incomplete transactions.

Nested Transaction Model 19.4.1

Nested transaction A transaction is viewed as a collection of related subtasks,
model or subtransactions, each of which may also contain any
number of subtransactions,

The nested transaction model was introduced by Moss (1981). In this model, the
complete transaction forms a tree, or hierarchy, of subtransactions. There is a top-level
transaction that can have a number of child transactions; each child transaction can also
have nested transactions. In Moss’s original proposal, only the leaf-level subtransactions
(the subtransactions at the lowest level of nesting) are allowed to perform the database
operations. For example, in Figure 19.22 we have a reservation transaction (T,) that

begin_ transaction T Complete R ti Figure 19.22
G R ey o Nested transactions.

begin_transaction T, Airline_ reservation
begin_ transaction Ts First_flight
reserve_airline_seat(London, Paris);
commit Tg;
begin_transaction T, Connecting flight
reserve_airline_seat(Paris, New York);
commit Ty;
commit Ty;
begin_transaction T Hotel_reservation
book_hotel(Hilton);
commit Ts;
begin_transaction Ts Car_reservation
book _car();
commit Tg;
commit T,;

592

Chapter 19 I Transaction Management

consists of booking flights (T,), hotel (Ts), and hire car (T,). The flight reservation booking
itself is split into two subtransactions: one to book a flight from London to Paris (T,), and
a second to book a connecting flight from Paris to New York (T,). Transactions have to
commit from the bottom upwards. Thus, T; and T, must commit before parent transaction
T,, and T, must commit before parent T,. However, a transaction abort at one level does
not have to affect a transaction in progress at a higher level. Instead, a parent is allowed to
perform its own recovery in one of the following ways:

B Retry the subtransaction.

® Ignore the failure, in which case the subtransaction is deemed to be non-vital. In our
example, the car rental may be deemed non-vital and the overall reservation can pro-
ceed without it.

® Run an alternative subtransaction, called a contingency subtransaction. In our example,
if the hotel reservation at the Hilton fails, an alternative booking may be possible at
another hotel, for example, the Sheraton.

® Abort.

The updates of committed subtransactions at intermediate levels are visible only within
the scope of their immediate parents. Thus, when T, commits, the changes are visible only
to T,. However, they are not visible to T, or any transaction external to T,. Further, a com-
mit of a subtransaction is conditionally subject to the commit or abort of its superiors.
Using this model, top-level transactions conform to the traditional ACID properties of a
flat transaction.

Moss also proposed a concurrency control protocol for nested transactions, based on
strict two-phase locking. The subtransactions of parent transactions are executed as if they
were separate transactions. A subtransaction is allowed to hold a lock if any other trans-
action that holds a conflicting lock is the subtransaction’s parent. When a subtransaction
commits, its locks are inherited by its parent. In inheriting a lock, the parent holds the
lock in a more exclusive mode if both the child and the parent hold a lock on the same
data item.

The main advantages of the nested transaction model are its support for:

B Modularity A transaction can be decomposed into a number of subtransactions for the
purposes of concurrency and recovery.

W A finer level of granularity for concurrency control and recovery Occurs at the level
of the subtransaction rather than the transaction.

® [ntra-transaction parallelism Subtransactions can execute concurrently.

® Intra-transaction recovery Uncommitted subtransactions can be aborted and rolled
back without any side-effects to other subtransactions.

Emulating nested transactions using savepoints

Savepoint An identifiable point in a flat transaction representing some partially
consistent state, which can be used as an internal restart point for the
transaction if a subsequent problem is detected.

19.4 Advanced Transaction Models

One of the objectives of the nested transaction model is to provide a uniz of recovery at
a finer level of granularity than the transaction. During the execution of a transaction,
the user can establish a savepoint, for example using a SAVE WORK statement.' This
generates an identifier that the user can subsequently use to roll the transaction back to,
for example using a ROLLBACK WORK <savepoint_identifier> statement. However,
unlike nested transactions, savepoints do not support any form of intra-transaction
parallelism,

Sagas 19.4.2

Sagas A sequence of (flat) transactions that can be interleaved with other
transactions.

The concept of sagas was introduced by Garcia-Molina and Salem (1987), and is based on
the use of compensating transactions. The DBMS guarantees that either all the transac-
tions in a saga are successfully completed or compensating transactions are run to recover
from partial execution. Unlike a nested transaction, which has an arbitrary level of nest-
ing, a saga has only one level of nesting. Further, for every subtransaction that is defined,
there is a corresponding compensating transaction that will semantically undo the sub-
transaction’s effect. Therefore, if we have a saga comprising a sequence of # transactions
Ty, Ty ..., T,, with corresponding compensating transactions C» C,..., C, then the
final outcome of the saga is one of the following execution sequences:

T, Ty...,T, if the transaction completes successfully
T, T, ..., TyCily ..., G, C if subtransaction T; fails and is aborted

For example, in the reservation system discussed above, to produce a saga we restructure
the transaction to remove the nesting of the airline reservations, as follows:

T3’ T4’ Ts’ T6

These subtransactions represent the leaf nodes of the top-level transaction in Figure 19.22,
We can easily derive compensating subtransactions to cancel the two flight bookings, the
hotel reservation, and the car rental reservation.

Compared with the flat transaction model, sagas relax the property of isolation by allow-
ing a saga to reveal its partial results to other concurrently executing transactions before it
completes. Sagas are generally useful when the subtransactions are relatively independent
and when compensating transactions can be produced, such as in our example. In some
instances though, it may be difficult to define a compensating transaction in advance, and
it may be necessary for the DBMS to interact with the user to determine the appropriate
compensating effect. In other instances, it may not be possible to define a compensating
transaction; for example, it may not be possible to define a compensating transaction for a
transaction that dispenses cash from an automatic teller machine.

! This is not standard SQL, simply an illustrative statement,

593

594 Chapter 19 I Transaction Management

19.4.3 Multilevel Transaction Model

Figure 19.23
Non-serializable
schedule.

The nested transaction model presented in Section 19.4.1 requires the commit process
to occur in a bottom-up fashion through the top-level transaction. This is called, more
precisely, a closed nested transaction, as the semantics of these transactions enforce
atomicity at the top level. In contrast, we also have open nested transactions, which relax
this condition and allow the partial results of subtransactions to be observed outside the
transaction. The saga model discussed in the previous section is an example of an open
nested transaction.

A specialization of the open nested transaction is the multilevel transaction model
where the tree of subtransactions is balanced (Weikum, 1991; Weikum and Schek, 1991).
Nodes at the same depth of the tree correspond to operations of the same level of abstrac-
tion in a DBMS. The edges in the tree represent the implementation of an operation by a
sequence of operations at the next lower level. The levels of an n-level transaction are
denoted Ly, Ly, . . . , L,, where L, represents the lowest level in the tree, and L, the root of
the tree. The traditional flat transaction ensures there are no conflicts at the lowest level
(L,). However, the basic concept in the multilevel transaction model is that two operations
at level L, may not conflict even though their implementations at the next lower level L,
do conflict. By taking advantage of the level-specific conflict information, multilevel trans-
actions allow a higher degree of concurrency than traditional flat transactions.

For example, consider the schedule consisting of two transactions T, and Tg shown in
Figure 19.23. We can easily demonstrate that this schedule is not conflict serializable.
However, consider dividing T, and Ty into the following subtransactions with higher-level
operations:

T,: T;, which increases bal, by 5 Ty: Ts, Which increases bal, by 10
T,,, which subtracts 5 from bal, Tg,, which subtracts 2 from bal,
Time Ty Tg
t begin_transaction
t read(bal,)
t3 baly = baly +5
ty write(bal)
ts begin_transaction
tg . read(baly)
ty bal, = baly + 10
15 write(baly)
ty read'(baly)
tio baly = bal, - 5
ty write(baly)
1Y) commit
t13 : read(bal,)
tiy baly = baly ~ 2
ty5 write(bal)
tig commit

19.4 Advanced Transaction Models

With knowledge of the semantics of these operations then, as addition and subtraction are
commutative, we can execute these subtransactions in any order, and the correct result will
always be generated.

Dynamic Restructuring

At the start of this section we discussed some of the characteristics of design applications,
for example uncertain duration (from hours to months), interaction with other concurrent
activities, and uncertain developments, so that some actions cannot be foreseen at the
beginning. To address the constraints imposed by the ACID properties of flat transactions,
two new operations were proposed: split-transaction and join-transaction (Pu et al.,
1988). The principle behind split-transactions is to split an active transaction into two seri-
alizable transactions and divide its actions and resources (for example, locked data items)
between the new transactions. The resulting transactions can proceed independently from
that point, perhaps controlled by different users, and behave as though they had always
been independent. This allows the partial results of a transaction to be shared with other
transactions while preserving its semantics; that is, if the original transaction conformed to
the ACID properties, then so will the new transactions.

The split-transaction operation can be applied only when it is possible to generate two
transactions that are serializable with each other and with all other concurrently executing
transactions. The conditions that permit a transaction T to be split into transactions A and
B are defined as follows:

(1) AWriteSet N BWriteSet — BWriteLast. This condition states that if both A and B
write to the same object, B’s write operations must follow A’s write operations.

(2) AReadSet N BWriteSet = . This condition states that A cannot see any of the results
from B.

(3) BReadSet AWriteSet = ShareSet. This condition states that B may see the results
of A.

These three conditions guarantee that A is serialized before B. However, if A aborts, B
must also abort because it has read data written by A. If both BWriteLast and ShareSet
are empty, then A and B can be serialized in any order and both can be committed
independently.

The join-transaction performs the reverse operation of the split-transaction, merging the
ongoing work of two or more independent transactions as though these transactions had
always been a single transaction. A split-transaction followed by a join-transaction on one
of the newly created transactions can be used to transfer resources among particular trans-
actions without having to make the resources available to other transactions.

The main advantages of the dynamic restructuring method are:

B Adaptive recovery, which allows part of the work done by a transaction to be com-
mitted, so that it will not be affected by subsequent failures.

® Reducing isolation, which allows resources to be released by committing part of the
transaction.

19.4.4

595

SSE S L P ———

596

Chapter 19 B Transaction Management

19.4.5

Workflow NModels

The models discussed so far in this section have been developed to overcome the limita-
tions of the flat transaction model for transactions that may be long-lived. However, it has
been argued that these models are still not sufficiently powerful to model some business
activities. More complex models have been proposed that are combinations of open and
nested transactions. However, as these models hardly conform to any of the ACID pro-
perties, the more appropriate name workflow model has been used instead.

A workflow is an activity involving the coordinated execution of multiple tasks per-
formed by different processing entities, which may be people or software systems, such as
a DBMS, an application program, or an electronic mail system. An example from the
DreamHome case study is the processing of a rental agreement for a property. The client
who wishes to rent a property contacts the appropriate member of staff appointed to man-
age the desired property. This member of staff contacts the company’s credit controller,
who verifies that the client is acceptable, using sources such as credit-check bureaux. The
credit controller then decides to approve or reject the application and informs the member
of staff of the final decision, who passes the final decision on to the client.

There are two general problems involved in workflow systems: the specification of the
workflow and the execution of the workflow. Both problems are complicated by the fact
that many organizations use multiple, independently managed systems to automate differ-
ent parts of the process. The following are defined as key issues in specifying a workflow
(Rusinkiewicz and Sheth, 1995):

m Task specification The execution structure of each task is defined by providing a set
of externally observable execution states and a set of transitions between these states.

m Task coordination requirements These are usually expressed as intertask-execution
dependencies and data-flow dependencies, as well as the termination conditions of the
workflow.

m Execution (correctness) requirements These restrict the execution of the workflow to
meet application-specific correctness criteria. They include failure and execution atomi-
city requirements and workflow concurrency control and recovery requirements.

In terms of execution, an activity has open nesting semantics that permit partial results
to be visible outside its boundary, allowing components of the activity to commit indi-
vidually. Components may be other activities with the same open nesting semantics, or
closed nested transactions that make their results visible to the entire system only when
they commit. However, a closed nested transaction can only be composed of other closed
nested transactions. Some components in an activity may be defined as vital and, if they
abort, their parents must also abort. In addition, compensating and contingency trans-
actions can be defined, as discussed previously.

For a more detailed discussion of advanced transaction models, the interested reader is
referred to Korth et al. (1988), Skarra and Zdonik (1989), Khoshafian and Abnous (1990),

Barghouti and Kaiser (1991), and Gray and Reuter (1993).

19.5 Concurrency Control and Recovery in Oracle ~ 597

Concurrency Control and Recovery in Oracle

To complete this chapter, we briefly examine the concurrency control and recovery mech-
anisms in Oracle8i (Oracle Corporation, 1999c). Oracle handles concurrent access slightly
differently from the protocols described in Section 19.2. Instead, Oracle uses a multiver-
sion read consistency protocol that guarantees a user sees a consistent view of the data
requested. If another user changes the underlying data during the execution of the query,
Oracle maintains a version of the data as it existed at the time the query started. If there
are other uncommitted transactions in progress when the query started, Oracle ensures that
the query does not see the changes made by these transactions. In addition, Oracle does
not place any locks on data for read operations, which means that a read operation never
blocks a write operation. We discuss these concepts in the remainder of this chapter. In
what follows, we use the terminology of the DBMS - Oracle refers to a relation as a table
with columns and rows. We provided an introduction to Oracle in Section 8.2

Oracle’s Isolation Levels

In Section 6.5 we discussed the concept of isolation levels, which describe how a trans-
action is isolated from other transactions. Oracle implements two of the four isolation levels
defined in the ISO SQL standard, namely READ COMMITTED and SERIALIZABLE:

B READ COMMITTED Serialization is enforced at the statement level (this is the
default isolation level). Thus, each statement within a transaction sees only data that
was committed before the statement (not the transaction) started. This does mean that
data may be changed by other transactions between executions of the same statement
within the same transaction, allowing nonrepeatable and phantom reads.

m SERIALIZABLE Serialization is enforced at the transaction level, so each statement
within a transaction sees only data that was committed before the transaction started, as
well as any changes made by the transaction through INSERT, UPDATE, or DELETE
statements.

Both isolation levels use row-level locking and both wait if a transaction tries to change
a row updated by an uncommitted transaction. If the blocking transaction aborts and rolls
back its changes, the waiting transaction can proceed to change the previously locked row.
If the blocking transaction commits and releases its locks, then with READ COMMITTED
mode the waiting transaction proceeds with its update. However, with SERIALIZABLE
mode, an error is returned indicating that the operations cannot be serialized. In this case,
the application developer has to add logic to the program to return to the start of the trans-
action and restart it.
In addition, Oracle supports a third isolation level:

m READ ONLY Read-only transactions see only data that was committed before the
transaction started.

The isolation level can be set in Oracle using the SQL SET TRANSACTION or ALTER
SESSION commands.

19.5.1

598

Chapter 19 B Transaction Management

19.5.2 Multiversion Read Consistency

In this section we briefly describe the implementation of Oracle’s multiversion read
consistency protocol. In particular, we describe the use of the rollback segments, system
change number (SCN), and locks.

Rollback segments

Rollback segments are structures in the Oracle database used to store undo information.
When a transaction is about to change the data in a block, Oracle first writes the before-
image of the data to a rollback segment. In addition to supporting multiversion read con-
sistency, rollback segments are also used to undo a transaction. Oracle also maintains one
or more redo logs, which record all the transactions that occur and are used to recover the
database in the event of a system failure.

System change number

To maintain the correct chronological order of operations, Oracle maintains a system
change number (SCN). The SCN is a logical timestamp that records the order in which
operations occur. Oracle stores the SCN in the redo log to redo transactions in the correct
sequence. Oracle uses the SCN to determine which version of a data item should be used
within a transaction. It also uses the SCN to determine when to clean out information from
the rollback segments.

Locks

Implicit locking occurs for all SQL statements so that a user never needs to lock any
resource explicitly, although Oracle does provide a mechanism to allow the user to acquire
locks manually or to alter the default locking behavior. The default locking mechanisms
lock data at the lowest level of restrictiveness to guarantee integrity while allowing the
highest degree of concurrency. Whereas many DBMSs store information on row locks as
a list in memory, Oracle stores row-locking information within the actual data block where
the row is stored.

As we discussed in Section 19.2, some DBMSs also allow lock escalation. For example,
if an SQL statement requires a high percentage of the rows within a table to be locked,
some DBMSs will escalate the individual row locks into a table lock. Although this
reduces the number of locks the DBMS has to manage, it results in unchanged rows being
locked, thereby potentially reducing concurrency and increasing the likelihood of deadlock.
As Oracle stores row locks within the data blocks, Oracle never needs to escalate locks.

Oracle supports a number of lock types, including:

m DDL locks — used to protect schema objects, such as the definitions of tables and views;

m DML locks — used to protect the base data, for example table locks protect entire tables
and row locks protect selected rows;

m internal locks — used to protect shared data structures;

19.5 Concurrency Control and Recovery in Oracle

m internal latches — used to protect data dictionary entries, data files, tablespaces, and
rollback segments;

m distributed locks — used to protect data in a distributed andfor parallel server
environment;

® PCM locks — parallel cache management (PCM) locks are used to protect the buffer
cache in a parallel server environment.

Deadlock Detection

Oracle automatically detects deadlock and resolves it by rolling back one of the statements
involved in the deadlock. A message is returned to the transaction whose statement is
rolled back. Usually the signaled transaction should be rolled back explicitly, but it can
retry the rolled-back statement after waiting.

Backup and Recovery

Oracle provides comprehensive backup and recovery services, and additional services to
support high availability. A complete review of these services is outwith the scope of this
book, and so we touch on only a few of the salient features. The interested reader is
referred to the Oracle documentation set for further information (Oracle Corporation, 1999c).

Recovery manager

The Oracle recovery manager (RMAN) provides server-managed backup and recovery.
This includes facilities to:

® backup one or more datafiles to disk or tape;

® backup archived redo logs to disk or tape;

B restore datafiles from disk or tape;

B restore and apply archived redo logs to perform recovery.

RMAN maintains a catalog of backup information and has the ability to perform complete

backups or incremental backups, in the latter case storing only those database blocks that
have changed since the last backup.

Instance recovery

When an Oracle instance is restarted following a failure, Oracle detects that a crash has
occurred using information in the control file and the headers of the database files. Oracle
will recover the database to a consistent state from the redo log files using rollforward and
rollback methods, as we discussed in Section 19.3. Oracle also allows checkpoints to be
taken at intervals determined by a parameter in the initialization file (INIT.ORA), although
setting this parameter to zero can disable this.

19.5.3

19.5.4

599

600 Chapter 19 I Transaction Management

Point-in-time recovery

In an earlier version of Oracle, point-in-time recovery allowed the datafiles to be restored
from backups and the redo information to be applied up to a specific time or system change
number (SCN). This was useful when an error had occurred and the database had to be
recovered to a specific point (for example, a user may have accidentally deleted a table).
Oracle has extended this facility to allow point-in-time recovery at the tablespace level,
allowing one or more tablespaces to be restored to a particular point.

Standby database

Oracle allows a standby database to be maintained in the event of the primary database
failing. The standby database can be kept at an alternative location and Oracle will ship
the redo logs to the alternative site as they are filled and apply them to the standby data-
base. This ensures that the standby database is almost up to date. As an extra feature, the
standby database can be opened for read-only access, which allows some queries to be
offloaded from the primary database.

Chapter Summary

= Concurrency control is the process of managing simultaneous operations on the database without having
them interfere with one another. Database recovery is the process of restoring the database to a correct state
after a failure. Both protect the database from inconsistencies and data loss.

= A transaction is an action, or series of actions, carried out by a single user or application program, which |

accesses.or changes the contents of the database. A transaction is a logical unit of work that takes the database
from one consistent state to another. Transactions can terminate successfully (commit) or unsuccessfully
(abort). Aborted. transactxons must be undone or rolled back. The transaction is also the unit of concurrency
and the unit of recovery

A transaction should possess the four bas1c, or so-called ACID, propertles atomlc1ty, cons1stency, isolation,

X

and durability. Atomicity and di _’blhtyf ‘e the responsibility of the recovery subsystem; 1solatxon and, to
some extent, cons1stency are th 1]1ty of the concurrency control suBsystem

tiple users are allowed to access the database sunultaneously
mmitted dependency, and inconsistent analysis can arise. Serial
t-a time, with no mterleavmg of. operatlons A schedule shows
ons., K schedule is, serlahzable if’ at produces thé same results as

Concurrency control is need
‘Without it, problems of lost u
execution means executmg on
the sequence of the operations
some serial schedule.

‘are two-phase lockmg (2PL) and tlmestampmg Locks may be_
hase lo_c_kmg, a transaction acquires all.its locks before releasing -
¢ ordered ‘in such a way '_tl_lat older transacfibns get pri'o'rit'y in the

Two methods that guarantee s
shared (read) or exclusive (Wme
any. With tlmestampmg, transa
event of conflict. &

‘Deadlock occurs when two or
The only way to break deadloc has: occurred is to abort one or more of the transacuons

A tree may be used to Tepres uilarity of locks m a system that allows locking of data items of
different sizes. When an item is locked ‘all its descendants are also locked When a new transaction requests :
alock, it is easy to check all the ancestors of the object to determine whether they are already locked. To_ show

Review Questions ’ 601

602 I Chapter 19 1 Transaction Management
19_._14 Discuss how the log file (or journal) is a 19.15 Compare and contrast the deferred update and
- - fundamental feature in any _r,ecoilery ' immediafe update recovery protocols. . [= el

:.'.mc;:gxaxlism';_ExP}aih what is meant by forward 19.16 Discuss the following advanced transaction - :

; m¢ba’ckward.reeoverj and describe how the models: P
log file is used in forward*and backward < _(a) nested transactions
i recovery, What is the significance of the . Lit by sagasseor b G e
wti_te=ahqad'lbg prot_ocog? wa do checkpoints i (c) multilevel transactions Yo mn i
. affect the recovery protocol? e (d) dynamically restructuring transactions.

Exercises

19.17

19.18

19.19
19.20

19.21

Analyze the DBMSs that you are currently using. What concurrency control protocol does each DBMS use?
What type of recovery mechanism is used? What support is provided for the advanced transaction models
discussed in Section 19.47

For each of the following schedules, state whether the schedule is serializable, conflict serializable, view
serializable, recoverable, and whether it avoids cascading aborts:

(a) read(T,, bal,), read(T), bal,), write(T,, bal,), write(T,, bal,), commit(T,), commit(T,)

(b) read(T),, bal,), read(T5, bal,), write(Ts, bal,), read(T,, bal,), read(T,, bal,), commit(T}), commit(T,)

(c) read(T,, bal,), write(T,, bal,), write(T,, bal,), abort(T,), commit(T,)

(d) write(T,, bal,), read(T, bal,), write(T, bal,), commit(T,), abort(T})

(e) read(T,, bal,), write(T, baly), write(T,, bal,), read(Ts, bal,), commit(T,), commit(T,), commit(Ts)

Draw a precedence graph for each of the schedules (a) to (¢) in the previous exercise.

(a) Explain what is meant by the constrained write rule and explain how to test whether a schedule is
serializable under the constrained write rule. Using the above method, determine whether the following
schedule is serializable:

S = [RI(Z)’ RZ(Y)’ WZ(Y)a RB(Y)v Rl(x)’ wl(x): WI(Z)’ W3(Y), RZ(X)’ R](Y)’ WI(Y)’ W2(X)1
Ry(W), W5(W)]

where R;(2)/W;(2) indicates a read/write by transaction i on data item Z.
(b) Would it be sensible to produce a concurrency control algorithm based on serializability? Justify your
answer. How is serializability used in standard concurrency control algorithms?

Produce a wait-for graph for the following transaction scenario, and determine whether deadlock exists:

Transaction ‘Dafa jtems locked Data items transaction
: by transaction . is waiting for .-~

T,) X1 X3

T, X3, X10 X7 Xg

T3 Xg x4a Xs

T, X7 Xy

Ts X1s Xs X3

Te Xg Xg X

T, Xg Xs

19.22
19.23
19.24

19.25

19.26
19.27

Exercises 603

Write an algorithm for shared and exclusive locking. How does granularity affect this algorithm?

Write an algorithm that checks whether the concurrently executing transactions are in deadlock.

Using the sample transactions given in Examples 19.1, 19.2, and 19.3, show how timestamping could be used
to produce serializable schedules.

Figure 19.18 gives a Venn diagram showing the relationships between conflict serializability, view serializ-
ability, two-phase locking, and timestamping. Extend the diagram to include optimistic and multiversion
concurrency control. Further extend the diagram to differentiate between 2PL and strict 2PL, timestamping
without Thomas’s write rule, and timestamping with Thomas’s write rule.

Explain why stable storage cannot really be implemented. How would you simulate stable storage?

Would it be realistic for a DBMS to dynamically maintain a wait-for graph rather than create it each time the
deadlock detection algorithm runs? Explain your answer.

